Skip to main content
Log in

Detoxification and bioregulation are critical for long-term waterborne arsenic exposure risk assessment for tilapia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Long-term metal exposure risk assessment for aquatic organism is a challenge because the chronic toxicity of chemical is not only determined by the amount of accumulated chemical but also affected by the ability of biological regulation or detoxification of biota. We quantified the arsenic (As) detoxification ability of tilapia and developed a biologically based growth toxicity modeling algorithm by integrating the process of detoxification and active regulations (i.e., the balance between accumulated dose, tissue damage and recovery, and the extent of induced toxic effect) for a life span ecological risk prediction. Results showed that detoxification rate (k dex) increased with increasing of waterborne As when the accumulated metal exceeded the internal threshold level of 19.1 μg g − 1. The k dex values were comparable to or even higher than the rates of physiological loss and growth dilution in higher exposure conditions. Model predictions obtained from the proposed growth toxicity model were consistent with the measured growth data. The growth toxicity model was also used to illustrate the health condition and growth trajectories of tilapia from birth to natural death under different exposure scenarios. Results showed that temporal trends of health rates and growth trajectories of exposed fish in different treatments decreased with increasing time and waterborne As, revealing concentration-specific patterns. We suggested that the detoxification rate is critical and should be involved in the risk assessments framework. Our proposed modeling algorithm well characterizes the internal regulation activities and biological response of tilapia under long-term metal stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barata, C., & Baird, D. J. (2000). Determining the ecotoxicological mode of action of chemicals from measurements made on individuals: Results from instar-based tests with Daphnia magna Straus. Aquatic Toxicology, 48, 195–209.

    Article  CAS  Google Scholar 

  • Campbell, P. G. C., Giguere, A., Bonneris, E., & Hare, L. (2005). Cadmium-handling strategies in two chronically exposed indigenous freshwater organisms—The yellow perch (Perca flavescens) and the floater mollusc (Pyganodon grandis). Aquatic Toxicology, 72, 83–97.

    Article  CAS  Google Scholar 

  • Chen, C. M., Yu, S. C., & Liu, M. C. (2001). Use of Japanese medaka (Oryzia latipes) and tilapia (Oreochromis mossambicus) in toxicity tests on different industrial effluents in Taiwan. Archives of Environmental Contamination and Toxicology, 40, 363–370.

    Article  CAS  Google Scholar 

  • Croteau, M. N., & Luoma, S. N. (2009). Predicting dietborne metal toxicity from metal influxes. Environmental Science and Technology, 43, 4915–4921.

    Article  CAS  Google Scholar 

  • Dang, F., Zhong, H., & Wang, W. X. (2009). Copper uptake kinetics and regulation in a marine fish after waterborne copper acclimation. Aquatic Toxicology, 94, 238–244.

    Article  CAS  Google Scholar 

  • De Schamphelaere, K. A. C., & Janssen, C. R. (2004). Bioavailability and chronic toxicity of zinc to juvenile rainbow trout (Oncorhynchus mykiss): Comparison with other fish species and development of a biotic ligand model. Environmental Science and Technology, 38, 6201–6209.

    Article  Google Scholar 

  • DeLonay, A. J., Little, E. E., Woodward, D. F., Brumbaugh, W. G., Farag, A. M., & Rabeni, C. F. (1993). Sensitivity of early-life-stage golden trout to low pH and elevated aluminium. Environmental Toxicology and Chemistry, 12, 1223–1232.

    Article  CAS  Google Scholar 

  • Escher, B. I., & Hermens, J. L. M. (2004). Internal exposure: Linking bioavailability to effects. Environmental Science and Technology, 38, 455A–462A.

    Article  Google Scholar 

  • Forrester, G. E., Fredericks, B. I., Gerdeman, D., Evans, B., Steele, M. A., Zayed, K., et al. (2003). Growth of estuarine fish is associated with the combined concentration of sediment contaminants and shows no adaptation or acclimation to past conditions. Marine Environmental Researcher, 56, 423–442.

    Article  CAS  Google Scholar 

  • Jager, T., Crommentuijn, T., Van Gestel, C. A. M., & Kooijman, S. A. L. M. (2004). Simultaneous modeling of multiple end points in life-cycle toxicity tests. Environmental Science and Technology, 38, 2894–2900.

    Article  CAS  Google Scholar 

  • Kammenga, J. E., Busschers, M., Van Straalen, N. M., Jepson, P. C., & Bakker, J. (1996). Stress induced fitness reduction is not determined by the most sensitive life-cycle trait. Functional Ecology, 10, 06–111.

    Article  Google Scholar 

  • Kooijman, S. A. L. M., & Bedaux, J. J. M. (1996). The analysis of aquatic toxicity data. Amsterdam: VU University Press.

    Google Scholar 

  • Kraemer, L. D., Campbell, P. G. C., & Hare, L. (2008). Modeling cadmium accumulation in indigenous yellow perch (Perca flavescens). Canadian Journal of Fisheries and Aquatic Science, 65, 1623–1634.

    Article  CAS  Google Scholar 

  • Lee, J. H., Peter, F. L., & Koh, C. H. (2002). Prediction of time-dependent PAH toxicity in Hyalella azteca using a damage assessment model. Environmental Science and Technology, 36, 3131–3138.

    Article  CAS  Google Scholar 

  • Liao, C. M., Chen, B. C., Singh, S., Lin, M. C., Liu, C. W., & Han, B. C. (2003). Acute toxicity and bioaccumulation of arsenic in tilapia (Oreochromis mossambicus) from a blackfoot disease area in Taiwan. Environmental Toxicology, 18, 252–259.

    Article  CAS  Google Scholar 

  • Liao, C. M., Tsai, J. W., Ling, M. P., Liang, H. M., Chou, Y. H., & Yang, P. T. (2004). Organ-specific toxicokinetics and dose-response of arsenic in tilapia Oreochromis mossambicus. Archives of Environmental Contamination and Toxicology, 47, 502–510.

    Article  CAS  Google Scholar 

  • McGeer, J. C., Brix, K. V., Skeaff, J. M., DeForest, D. K., Brigham, S. I., Adams, W. J., et al. (2003). Inverse relationship between bioconcentration factor and exposure concentration for metals: Implications for hazard assessment of metals in the aquatic environment. Environmental Toxicology and Chemistry, 22, 1017–037.

    Article  CAS  Google Scholar 

  • Muyssen, B. T. A., & Janssen, C. R. (2005). Importance of acclimation to environmentally relevant zinc concentrations on the sensitivity of Daphnia Magna toward zinc. Environmental Toxicology and Chemistry, 24, 895–901.

    Article  CAS  Google Scholar 

  • Newman, M. C., & Unger, M. A. (2003). Fundamentals of ecotoxicology. New York: Levis.

    Google Scholar 

  • Niyogi, S., Kent, R., & Wood, C. M. (2008). Effects of water chemistry variables on gill binding and acute toxicity of cadmium in rainbow trout (Oncorhynchus mykiss): A biotic ligand model (BLM) approach. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 148, 305–314.

    Article  Google Scholar 

  • Pan, K., & Wang, W. X. (2009). Biodynamics to explain the difference of copper body concentration in five marine bivalve species. Environmental Science and Technology, 43, 2137–2143.

    Article  CAS  Google Scholar 

  • Rainbow, P. S. (2002). Trace metal concentrations in aquatic invertebrate: Why and so what? Environmental Pollutant, 1, 3–26.

    Google Scholar 

  • Sappal, R., Burka, J., Dawson, S., & Kamunde, C. (2009). Bioaccumulation and subcellular partitioning of zinc in rainbow trout (Oncorhynchus mykiss): Cross-talk between waterborne and dietary uptake. Aquatic Toxicology, 91, 281–290.

    Article  CAS  Google Scholar 

  • Schuler, L. J., Landrum, P. F., & Lydy, M. J. (2004). Time-dependent toxicity of fluoranthene to freshwater invertebrates and the role of biotransformation on lethal body residues. Environmental Science and Technology, 38, 6247–6255.

    Article  CAS  Google Scholar 

  • Seebaugh, D. R., & Wallace, W. G. (2009). Assimilation and subcellular partitioning of elements by grass shrimp collected along an impact gradient. Aquatic Toxicology, 93, 107–115.

    Article  CAS  Google Scholar 

  • Sharma, V. K., & Sohn, M. (2009). Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environment International, 35, 743–759.

    Article  CAS  Google Scholar 

  • Sherwood, G. D., Rasmussen, J. B., Rowan, D. J., Brodeur, J., & Hontela, A. (2000). Bioenergetic costs of heavy metal exposure in yellow perch (Perca flavescens): In situ estimates with a radiotracer (137Cs) technique. Canadian Journal of Fisheries and Aquatic Science, 57, 441–450.

    Article  CAS  Google Scholar 

  • Singh, S. (2001). A physiologically based pharmacokinetic and pharmacodynamic model for arsenic accumulation in aquacultural fish from blackfoot disease area in Taiwan. Unpublished PhD dissertation, National Taiwan University.

  • Suhendrayatna, Ohki, A., Nakajima, T., & Maeda, S. (2002). Studies on the accumulation and transformation of arsenic in fresh organisms II. Accumulation and transformation of arsenic compounds by Tilapia mossambica. Chemosphere, 46, 325–331.

    Article  CAS  Google Scholar 

  • Taylor, L. N., McGeer, J. C., Wood, C. M., & McDonald, D. G. (2000). The physiological effects of chronic copper exposure to rainbow trout (Oncorhynchus mykiss) in hard and soft water: An evaluation of chronic indicators. Environmental Toxicology and Chemistry, 19, 2298–2308.

    CAS  Google Scholar 

  • Tsai, J. W., & Liao, C. M. (2006). Mode of action and growth toxicity of arsenic to tilapia Oreochromis mossambicus can be determined bioenergetically. Archives of Environmental Contamination and Toxicology, 50, 144–152.

    Article  CAS  Google Scholar 

  • Tsai, J. W., Liao, C. M., & Liao, V. H. C. (2006). A biologically based damage assessment model to enhance aquacultural water quality management. Aquaculture, 251, 280–294.

    Article  CAS  Google Scholar 

  • Tsai, J. W., Chen, W. Y., Ju, Y. R., & Liao, C. M. (2009). Bioavailability links mode of action can improve the long-term field risk assessment for tilapia exposed to arsenic. Environment International, 35, 727–736.

    Article  CAS  Google Scholar 

  • Uchida, K., Kajimura, S., Riley, L. G., Hirano, T., Aida, K., & Grau, E. G. (2003). Effects of fasting on growth hormone/insulin-like growth factor I axis in the tilapia, Oreochromis mossambicus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 134, 429–439.

    Article  CAS  Google Scholar 

  • USEPA (United States Environmental Protection Agency) (2002). National recommended water quality criteria. EPA-822-R-02–047. Website:http://www.epa.gov/ost/pc/revcom.pdf.

  • Vijver, M. G., Van Gestel, C. A. M., Lanno, R. P., Van Straalen, N. M., & Peijnenburg, W. J. G. M. (2004). Internal metal sequestration and its ecotoxicological relevance: A review. Environmental Science and Technology, 38, 4705–4712.

    Article  CAS  Google Scholar 

  • Voets, J., Redeker, E. S., Blust, R., Bervoets, L. (2009). Differences in metal sequestration between zebra mussels from clean and polluted field locations. Aquatic Toxicology, 93, 53–60.

    Article  CAS  Google Scholar 

  • West, G. B., Brown, J. H., & Enquist, B. J. (2001). A general model for ontogenetic growth. Nature, 413, 628–631.

    Article  CAS  Google Scholar 

  • Wu, S. M., Ding, H. R., Lin, L. Y., & Lin, Y. S. (2008). Juvenile tilapia (Oreochromis mossambicus) strive to maintain physiological functions after waterborne copper exposure. Archives of Environmental Contamination and Toxicology, 54, 482–492.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, JW., Huang, YH., Chen, WY. et al. Detoxification and bioregulation are critical for long-term waterborne arsenic exposure risk assessment for tilapia. Environ Monit Assess 184, 561–572 (2012). https://doi.org/10.1007/s10661-011-1988-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-1988-8

Keywords

Navigation