Skip to main content
Log in

Dry deposition velocity of atmospheric nitrogen in a typical red soil agro-ecosystem in Southeastern China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Atmospheric dry deposition is an important nitrogen (N) input to farmland ecosystems. The main nitrogen compounds in the atmosphere include gaseous N (NH3, NO2, HNO3) and aerosol N (NH4 +/NO3 ). With the knowledge of increasing agricultural effects by dry deposition of nitrogen, researchers have paid great attention to this topic. Based on the big-leaf resistance dry deposition model, dry N deposition velocities (V d) in a typical red soil agro-ecosystem, Yingtan, Jiangxi, Southeastern China, were estimated with the data from an Auto-Meteorological Experiment Station during 2004–2007. The results show that hourly deposition velocities (V dh) were in the range of 0.17–0.34, 0.05–0.24, 0.57–1.27, and 0.05–0.41 cm/s for NH3, NO2, HNO3, and aerosol N, respectively, and the V dh were much higher in daytime than in nighttime and had a peak value around noon. Monthly dry deposition velocities (V dm) were in the range of 0.14–0.36, 0.06–0.18, and 0.07–0.25 cm/s for NH3, NO2, and aerosol N, respectively. Their minimum values appeared from June to August, while their maximum values occurred from February to March each year. The maximum value for HNO3 deposition velocities appeared in July each year, and V dm(HNO3) ranged from 0.58 to 1.31 cm/s during the 4 years. As for seasonal deposition velocities (V ds), V ds(NH3), V ds(NO2), and V ds(aerosol N) in winter or spring were significantly higher than those in summer or autumn, while V ds(HNO3) in summer were higher than that in winter. In addition, there is no significant difference among all the annual means for deposition velocities (V da). The average values for NH3, NO2, HNO3, and aerosol N deposition velocities in the 4 years were 0.26, 0.12, 0.81, and 0.16 cm/s, respectively. The model is convenient and feasible to estimate dry deposition velocity of atmospheric nitrogen in the typical red soil agro-ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aber, J. D., McDowell, W. H., Nadelhoffer, K. J., Magill, A. H., Bernston, G. M., Kamekea, M., et al. (1998). Nitrogen in temperate forest ecosytems—Hypotheses revisited. Bioscience, 48, 921–934.

    Article  Google Scholar 

  • Anatolaki, C., & Tsitouridou, R. (2007). Atmospheric deposition of nitrogen, sulfur and chloride in Thessaloniki, Greece. Atmospheric Research, 85, 413–428.

    Article  CAS  Google Scholar 

  • Anderson, N., Strader, R., & Davidson, C. (2003). Airborne reduced nitrogen: Ammonia emissions from agriculture and other sources. Environment International, 29, 277–286.

    Article  CAS  Google Scholar 

  • Aneja, V. P., Roelle, P. A., & Robarge, W. P. (1998). Characterization of biogenic nitric oxide source strength in the Southeast United States. Environmental Pollution, 102, 211–218.

    Article  CAS  Google Scholar 

  • Arne, S., & Kjetil, T. (1997). Atmospheric deposition of nitrogen, sulfur and chlorine in Bjerkreim and Auli basin planning of Southern Norway. Ambio, 26(5), 254–260, 282.

    Google Scholar 

  • Bhattacharya, A., Mudgal, R., & Taneja, A. (2004). Acid deposition and critical load analysis in Agra, India. Journal of Hazardous Materials, 106B, 157–160.

    Article  Google Scholar 

  • Butler, T. J., & Linkens, G. E. (1995). A direct comparison of throughfall plus stem flow to estimates of dry and total deposition for sulfur and nitrogen. Atmospheric Environment, 29, 1253–1265.

    Article  CAS  Google Scholar 

  • Cai, G. X., & Zhu, Z. L. (2000). An assessment of N loss from agricultural fields to the environment in China. Nutrition Cycle in Agro-Ecosystems, 57, 67–73.

    Google Scholar 

  • Cui, J., Zhou, J., Ma, Y. H., & He, Y. Q. (2008). Characteristic of N-balance in red soil upland in China. Soils, 40(2), 153–157 (in Chinese).

    Google Scholar 

  • Devlaeminck, R., Schrijver, A. D., & Hermy, M. (2005). Variation in throughfall deposition across a deciduous beech (Fagus sylvatica L.) forest edge in Flanders. Science of the Total Environment, 337, 1937–1949.

    Article  Google Scholar 

  • Dise, N. B., & Wright, R. F. (1995). Nitrogen leaching from European forests in relation to nitrogen deposition. Forest Ecology and Management, 71, 153–161.

    Article  Google Scholar 

  • Duyzer, J. W., Vermetten, A. W. M., & Westrate, L. M. (1992). Measurement of the dry deposition flux of NH3 to a coniferous forest. Environmental Pollution, 75, 3–13.

    Article  CAS  Google Scholar 

  • Erisman, J. W., De Leeuw, F. A. A. M., & van Aalst, R. M. (1989). Deposition of the most acidifying components in The Netherlands during the period 1980–1986. Atmospheric Environment, 23, 1051–1062.

    Article  CAS  Google Scholar 

  • Fan, J. L., Hu, Z. Y., Zhuang, S. Y., Zhou, J., Wang, T. J., & Liu, C. Y. (2007). Observation of atmospheric nitrogen deposition into forestland. China Environmental Science, 27(1), 7–9 (in Chinese).

    CAS  Google Scholar 

  • Fangmeier, J. W., Hadwiger, F. A., Vander Eerden, L. J. M., & Janger, H. J. (1994). Effect of atmospheric ammonia on vegetation—A review. Environmental Pollution, 86, 43–82.

    Article  CAS  Google Scholar 

  • Galloway, J. N., Zhao, D. W., Thomson, V. E., & Chang, L. H. (1996). Nitrogen mobilization in the United States of America and the People’s Republic of China. Atmospheric Environment, 30, 1551–1561.

    Article  CAS  Google Scholar 

  • Gelinas, Y., & Schmit, J. P. (1998). Estimation of the bulk atmospheric deposition of major and trace elements to a rural watershed. Atmospheric Environment, 32, 1473–1483.

    Article  CAS  Google Scholar 

  • Goulding, K. W. T., Bailey, N. J., Bradbury, N. J., Hargreaves, P., Howe, M., Murphy, D. V., et al. (1998). Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes. New Phytologist, 139, 49–58.

    Article  CAS  Google Scholar 

  • He, Y. Q., & Huang, X. Q. (1998). Nutrient cycling, balance and regulation on red soil agroecosystem. Acta Pedologica Sinic, 35(4), 501–508 (in Chinese).

    CAS  Google Scholar 

  • He, C. E., Liu, X. J., Fangmeier, A., & Zhang, F. S. (2007). Quantifying the total airborne nitrogen input into agroecosystems in the North China Plain. Agriculture, Ecosystems & Environment, 121(4), 395–400.

    Article  CAS  Google Scholar 

  • Hicks, B. B., Baldocchi, D. D., Meyers, T. P., Hosker, R. P., & Matt, D. R. (1987). A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water, Air, and Soil Pollution, 36, 311–330.

    Article  CAS  Google Scholar 

  • Hicks, B. B., Hosker, R. P., Meyers, T. P., & Womack, J. D. (1991). Dry deposition inferential measurement techniques—I. Design and tests of a prototype meteorological and chemic system for determining dry deposition. Atmospheric Environment, 25, 2345–2359.

    Google Scholar 

  • Horii, C. V., Munger, J. W., Wofsy, S. C., Zahniser, M., Nelson, D., & McManus, J. B. (2005). Atmospheric reactive nitrogen concentration and flux budgets at a Northeastern US forest site. Agricultural and Forest Meteorology, 133, 210–225.

    Article  Google Scholar 

  • Hu, Z. Y., Xu, C. K., Zhou, L. N., Sun, B. H., He, Y. Q., Zhou, J., et al. (2007). Contribution of atmospheric nitrogen compounds to N deposition in a broadleaf forest of Southern China. Pedosphere, 17(3), 360–365.

    Article  CAS  Google Scholar 

  • Lindberg, S. E., & Lovett, G. M. (1985). Field measurements of partial dry deposition rates to foliage and inert surfaces in a forest canopy. Environmental Science and Technology, 19, 238–244.

    Article  CAS  Google Scholar 

  • Liu, Y., & Sun, Q. R. (1996). Measurement of dry deposition velocity of ammonia. Environmental Chemistry, 15(5), 399–403 (in Chinese).

    Google Scholar 

  • Magill, A. H., Aber, J. D., Bernston, G. M., McDowell, W. H., Nadelhoffer, K. J., Memillo, J. M., et al. (2000). Long-term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystems, 3, 238–253.

    Article  Google Scholar 

  • Mosier, A. R. (2001). Exchange of gaseous nitrogen compounds between agricultural systems and the atmosphere. Plant and Soil, 228, 17–27.

    Article  CAS  Google Scholar 

  • Moumen, N., Yi, S. M., Raymond, H. A., Han, Y., & Holsen, T. M. (2004). Quantifying the dry deposition of ammonia in ammonia-rich and ammonia-poor environments using a surrogate surface approach. Atmospheric Environment, 38, 2677–2686.

    Article  CAS  Google Scholar 

  • Nanus, L., Canpbell, D. H., Ingersoll, G. P., Clow, D. W., & Mast, M. A. (2003). Atmospheric deposition maps for the Rocky Mountains. Atmospheric Environment, 37, 4881–4892.

    Article  CAS  Google Scholar 

  • Ou, Y. Y., Wang, T. J., Zhang, Y., Hu, Z. Y., & Xu, C. K. (2003). A method calculating dry deposition velocity of air pollutants and its application. Journal of Nanjing Institute of Meteorology, 26(2), 210–218 (in Chinese).

    Google Scholar 

  • Paerl, H. W. (2002). Connecting atmospheric nitrogen deposition to coastal eutrophication. Environmental Science & Technology, 36, 323–326.

    Article  Google Scholar 

  • Peters, N. E., Meyers, T. P., & Aulenbach, B. T. (2002). Status and trends in atmospheric deposition and emissions near Atlanta, Georgia, 1986–99. Atmospheric Environment, 36, 1577–1588.

    Article  CAS  Google Scholar 

  • Poor, N., Pribble, R., & Greening, H. (2001). Direct wet and dry deposition of ammonia, nitric acid, ammonium and nitrate to the Tampa Bay Estuary, FL, USA. Atmospheric Environment, 35, 3947–3955.

    Article  CAS  Google Scholar 

  • Pratt, G. C., Orr, E. J., Bock, D. C., Strassman, R. L., Fundine, D. W., Twaroski, C. J., et al. (1996). Estimation of dry deposition of inorganics using filter pack data and inferred deposition velocity. Environmental Science & Technology, 30, 2168–2177.

    Article  CAS  Google Scholar 

  • Pryor, S. C., & Barthelmie, R. J. (2000). Particle dry deposition to water surfaces: Processes and consequences. Marine Pollution Bulletin, 41(1–6), 220–231.

    Article  CAS  Google Scholar 

  • Pryor, S. C., Barthelmie, R. J., & Carreiro, M. (2001). Nitrogen deposition to and cycling in a deciduous forest. In Optimizing nitrogen management in food and energy production and environmental protection: Proceeding of the 2nd international nitrogen conference on science and policy. The Scientific World, 1(S2), 245–254.

    CAS  Google Scholar 

  • Puxbaum, H., & Gregori, M. (1998). Seasonal and annual deposition rates of sulphur, nitrogen and chloride species to an oak forest in north-eastern Austria (WOLKERSDORF, 240 m A.S.L.). Atmospheric Environment, 32(20), 3557–3568.

    Article  CAS  Google Scholar 

  • Raymond, H. A., Yi, S. M., Moumen, N., Han, Y., & Holsen, T. M. (2004). Quantifying the dry deposition of reactive nitrogen and sulfur containing species in remote areas using a surrogate surface analysis approach. Atmospheric Environment, 38, 2687–2697.

    Article  CAS  Google Scholar 

  • Schlesinger, W. H., & Hartley, A. E. (1992). A global budget for atmospheric NH3. Biogeochemistry, 15, 191–211.

    Article  CAS  Google Scholar 

  • Shahin, U. M., Holsen, T. M., & Odabasi, M. (2002). Dry deposition with a water surface sampler: A comparison to modeled results. Atmospheric Environment, 36, 3267–3276.

    Article  CAS  Google Scholar 

  • Shahin, U. M., Zhu, X., & Holsen, T. M. (1999). Dry deposition of reduced and reactive nitrogen: a surrogate surface approach. Environmental Science and Technology, 33, 2113–2117.

    Article  CAS  Google Scholar 

  • Smith, R. I., Fowler, D., Sutton, M. A., Flechard, C., & Coyle, M. (2000). Regional estimation of pollutant gas dry deposition in the UK: Model description, sensitivity analyses and outputs. Atmospheric Environment, 34, 3757–3777.

    Article  CAS  Google Scholar 

  • Sutton, M. A., Moncieff, J. B., & Fowler, D. (1992). Deposition of atmospheric ammonia to moorlands. Environmental Pollution, 75, 15–24.

    Article  CAS  Google Scholar 

  • Takahashi, A., Sato, L., Wakamatsu, T., & Fujita, S. (2001). Atmospheric deposition of acidifying components to a Japanese cedar forest. Water, Air and Soil Pollution, 130, 559–564.

    Article  Google Scholar 

  • Walcek, C. J. (1986). SO2, sulfate and HNO3 deposition velocities computed using regional landuse and meteorological data. Atmospheric Environment, 20(5), 949–964.

    Article  CAS  Google Scholar 

  • Wang, T. J., Yang, H. M., Gao, L. J., Zhang, Y., Hu, Z. Y., & Xu, C. K. (2005). Atmospheric sulfur deposition on farmland in South China. Pedosphere, 15(1), 120–128.

    CAS  Google Scholar 

  • Weigel, A., Russow, R., & Korschenschens, M. (2000). Quantification of airborne N-input in long-term field experiments and its validation through measurements using 15N isotope dilution. Journal of Plant Nutrition and Soil Science, 163, 261–265.

    Article  Google Scholar 

  • Wellburn, A. R. (1990). Why are atmospheric oxides of N usually phytotoxic and not alternative fertilizers? New Phytologist, 115, 395–429.

    Article  CAS  Google Scholar 

  • Wesely, M. L. (1989). Parameterization of surface resistance to gaseous dry deposition in regional-scale numerical models. Atmospheric Environment, 23(6), 1293–1304.

    Article  CAS  Google Scholar 

  • Wesely, M. L. & Hicks, B. B. (1977). Some factors that affect the deposition rates of sulfur dioxide and similar gases on vegetation. Air Pollution Control Association, 27, 1110–1116.

    CAS  Google Scholar 

  • Whitall, D., Hendrickson, B., & Paerl, H. (2003). Importance of atmospherically deposited nitrogen to the annual nitrogen budget of the Neuse River Esuary, North Carolina. Environmental International, 29, 393–399.

    Article  CAS  Google Scholar 

  • Zhang, Y., Wang, T. J., Hu, Z. Y., & Xu, K. (2004). Temporal variety and spatial distribution of dry deposition velocities of typical air pollutants over different landuse types. Climatic and Environmental Research, 9(4), 591–604 (in Chinese).

    Google Scholar 

  • Zhao, D. W., & Wang, A. P. (1994). Estimation of anthropogenic ammonia emissions in Asia. Atmospheric Environment, 28, 689–694.

    Article  Google Scholar 

  • Zhou, J., Cui, J., Wang, G. Q., Ma, Y. H., & Guan, J. (2007). Ammonia volatilization in relation to N application rate and climate factors in upland red soil in spring and autumn. Acta Pedologica Sinica, 44(3), 499–507 (in Chinese).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Cui, J., Fan, Jl. et al. Dry deposition velocity of atmospheric nitrogen in a typical red soil agro-ecosystem in Southeastern China. Environ Monit Assess 167, 105–113 (2010). https://doi.org/10.1007/s10661-009-1034-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1034-2

Keywords

Navigation