Skip to main content

Advertisement

Log in

Developmental strategies for sustainable ecosystem on mine spoil dumps: a case of study

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

An important goal of ecological rehabilitation is to accelerate natural successional processes to increase biological productivity, soil fertility and biotic control over biogeochemical fluxes within the recovering ecosystems. A new approach called Microbe Assisted Green Technology (MAGT) is an integrated biotechnological approach developed at National Environmental Engineering Research Institute (NEERI) through exhaustive laboratory as well as field studies and serve as a model for land reclamation and development of lush green vegetation on mine overburdens. One year old seedlings of native tree species were planted on 6.3 ha area of manganese mine overburden at Gumgaon under Manganese Ore India Ltd., Maharashtra, India. Continuous efforts resulted in nutrient rich soil with high N, P, K and organic carbon; well developed biodiversity, including bacteria, fungi, higher plants (more than 350 species) and different classes of animals. Planted trees accumulated 698 t ha − 1 above ground biomass and 143 t ha − 1 below ground mass. This was achieved in 18 years by MAGT, which otherwise takes hundreds of years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Black, C. A., Evans, D. D., White, J. L., Ensminger, L. E., & Clark, F. E. (1965). Methods of soil analysis: Chemical and microbiological properties, agronomy 9, part II. Madison, WI: American Society of Agronomy.

    Google Scholar 

  • Dickinson, N. M. (2000). Strategies for sustainable woodland on contaminated soils. Chemosphere, 41, 259–263. doi:10.1016/S0045-6535(99)00419-1.

    Article  CAS  Google Scholar 

  • FAO (1997). Estimating biomass and biomass change of tropical forests: A primer, by S. Brown. FAO Forestry Paper No. 134. Rome.

  • Filcheva, E., Noustorova, M., Gentcheva-Kostadinova, S. V., Haigh, M. J. (2000). Organic accumulation and microbial action in surface coal-mine spoils, Pernik, Bulgaria. Ecological Engineering, 15, 1–15. doi:10.1016/S0925-8574(99)00008-7.

    Article  Google Scholar 

  • Glimmerveen, I. (1996). Should trees now be more actively used in the rehabilitation of heavy metal contaminated sites? Aspects of Applied Biology, 44, 357–361.

    Google Scholar 

  • Gonzalez-Sangregorio, M. V., Trasar-Cepeda, M. C., Leiros, M. C., Gil-Sotres, F., & Guitian-Ojea, F. (1991). Early stages of lignite mine soil genesis: Changes in biochemical properties. Soil Biology & Biochemistry, 23, 589–595. doi:10.1016/0038-0717(91)90117-3.

    Article  CAS  Google Scholar 

  • Gupta, M., Kumar, A., & Yunus, M. (2000). Effect of fly-ash on metal composition and physiological responses in Leucaena Leucocephala, (Lamk.) De. Wit. Environmental Monitoring and Assessment, 61, 399–406. doi:10.1023/A:1006169716006.

    Article  CAS  Google Scholar 

  • Hariston, N. G. (1964). Studies on organization of animal communities. Jubilee symposium supplemented. Journal of Ecology, 52, 527–539.

    Google Scholar 

  • Hunt, H. W., Ingham, E. R., Coleman, D. C., Elliott, E. T., & Reid, C. P. P. (1988). Nitrogen limitation of production and decomposition in prairie, mountain meadow and pine forest. Ecology, 69, 1009–1016. doi:10.2307/1941256.

    Article  Google Scholar 

  • IFRI (2002). International Forest Research and Institution [IFRI] field manual [version 10.5]. Workshop in political theory and policy analysis. Bloomington: Indiana University.

    Google Scholar 

  • Ingham, E. R., Coleman, D. C., & Moore, J. C. (1989). An analysis of food web structure and functions in a shortgrass prairie, mountain meadow and lodgepole pine forest. Biology and Fertility of Soils, 8, 29–37. doi:10.1007/BF00260513.

    Article  Google Scholar 

  • Juwarkar, A. S., Juwarkar, A., Pande, V. S., & Bal, I. S. (1992). Restoration of manganese mine spoil productivity through pressmud utilization. In R. K. Singhal, A. K. Malhotra, & J. L. Collins (Eds.), Environmental issue and management of waste energy and production (pp. 827–830). Brookfield: Balkema.

    Google Scholar 

  • Juwarkar, A. A., Singh, S. K., & Devotta, S. (2006). Revegetation of mining wastelands with economically important species through Biotechnological interventions. In Proceedings of the international symposium on environmental issues of mineral industry (pp. 207–216). Mintech, India.

  • Kalra, Y. P., & Maynard, D. G. (1991). Methods for forest soil and plant analysis. Information report NOR-X-319. Forestry Canada, Northwest Region, Northern Forestry Center, 116.

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421–428.

    CAS  Google Scholar 

  • Loeppert, R. H., & Suarez, D. L. (1996). Carbonate and gypsum. In J. M. Bigham (Ed.), Methods of soil analysis, part 3-chemical methods (pp. 437–474). Madiscon: American Society of Agronomy (SSSA book series no. 5).

  • Lugo, A. E. (1992). Comparison of tropical tree plantations with secondary forests of similar age. Ecological Monographs, 62, 1–41. doi:10.2307/2937169.

    Article  Google Scholar 

  • Maiz, I., Esnaola, M. N., & Millan, E. (1997). Evaluation of heavy metal availability in contaminated soils by a short sequential extraction procedure. The Science of the Total Environment, 206, 107–115.

    CAS  Google Scholar 

  • Moffat, A. J., Armstrong, A. T., & Ockleston, J. (2001). The optimization of sewage sludge and effluent disposal on energy crops of short rotation hybrid poplar. Biomass and Bioenergy, 20, 161–169. doi:10.1016/S0961-9534(00)00073-8.

    Article  CAS  Google Scholar 

  • Neuman, D. R., Munshower, F. F., Dolhopf, D. H. (1993). Revegetation of mining wastes in Montana. Montana Ag Research, 1, 3–7.

    Google Scholar 

  • Oyler, J. (1988). Revegetation of metals contaminated site near a zinc smelter using sludge/fly ash amendments and herbaceous species. Trace Substances in Environmental Health, 22, 306–320.

    Google Scholar 

  • Perry, D. A. (1994). Forest ecosystems (p. 649). Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • Salomons, W. (1995). Environmental impact of metals derived from mining activities-processes, predictions, prevention. Journal of Geochemical Exploration, 52, 5–23. doi:10.1016/0375-6742(94)00039-E.

    Article  CAS  Google Scholar 

  • Santantonio, D., Hermann, R. K., & Overton, W. S. (1977). Root biomass studies in forest ecosystems. Pedobiologia, 17, 1–31.

    CAS  Google Scholar 

  • Sharples, J. M., Meharg, A. A., Chambers, S. M., & Cairney, J. W. G. (2000). Mechanism of arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae. Plant Physiology, 124, 1327–1334. doi:10.1104/pp.124.3.1327.

    Article  CAS  Google Scholar 

  • Shetty, K. G., Hetrick, B. A. D., Figge, D. A. H., & Schwab, A. P. (1994). Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environmental Pollution, 86, 181–188. doi:10.1016/0269-7491(94)90189-9.

    Article  CAS  Google Scholar 

  • Singh, L., & Singh, J. S. (1991). Species structure, dry matter dynamics and carbon flux of a dry tropical forest in India. Annals of Botany, 68, 263–273.

    Google Scholar 

  • Sopper, W. E. (1989). Revegetation of a contaminated zinc smelter site. Landscape and Urban Planning, 17, 241–250. doi:10.1016/0169-2046(89)90012-1.

    Article  Google Scholar 

  • Stroo, H. F., & Jencks, E. M. (1982). Enzyme activity and respiration in minesoils. Soil Science Society of America Journal, 46, 548–553.

    CAS  Google Scholar 

  • Tripathi, R. D., Vajpayee, P., Singh, N., Rai, U. N., Kumar, A., Ali, M. B., et al. (2004). Efficacy of various amendments for amelioration of fly-ash toxicity: Growth performance and metal composition of Cassia siamea Lamk. Chemosphere, 54, 1581–1588. doi:10.1016/j.chemosphere.2003.09.043.

    Article  CAS  Google Scholar 

  • USEPA (United States Environmental Protection Agency). (1987). Characterisation of municipal waste combustor ashes and leachates from municipal solid waste landfills and co-disposal sites. Washington, DC: United States Environmental Protection Agency (I–VII, 530-SW-87-028A-E).

  • Vandermeer, J., & Perfecto, I. (1995). Breakfast of biodiversity: the truth about rainforest destruction (185 p.). Oakland: Food First Books.

    Google Scholar 

  • Veblen, T. T., Schlegel, F. M., & Escobar, R. B. (1980). Dry matter production of two species of bamboo (Chusquea culeou and C. tenuiflora) in South Central Chile. Journal of Ecology, 68, 397–404. doi:10.2307/2259412.

    Article  Google Scholar 

  • Wali, M. K. (1987). The structure, dynamics, and rehabilitation of drastically disturbed ecosystems. In T. N. Khoshoo (Ed.), Perspectives in environmental management (pp. 163–183). New Delhi: IBH.

    Google Scholar 

  • Wong, M. H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50, 775–780. doi:10.1016/S0045-6535(02)00232-1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asha A. Juwarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juwarkar, A.A., Yadav, S.K., Thawale, P.R. et al. Developmental strategies for sustainable ecosystem on mine spoil dumps: a case of study. Environ Monit Assess 157, 471–481 (2009). https://doi.org/10.1007/s10661-008-0549-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0549-2

Keywords

Navigation