Skip to main content
Log in

SEM-EDX analysis of various sizes aerosols in Delhi India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX) was used to understand the differences in morphology, elemental composition and particle density of aerosols in different five size ranges to further investigate the potential sources as well as transport of pollutants from/at a much polluted and a very clean area of Delhi. Aerosol samples were obtained in five different size ranges viz. ≥10.9, 10.9−5.4, 5.4−1.6, 1.6−0.7 and ≤0.7µm from a considerably very clean and a much polluted area of Delhi. It was observed that at polluted area most of the particles irrespective of size are of anthropogenic origin. At clean area, in coarse size fractions particles are of natural origin while in fine size range the presence of anthropogenic particles suggests the transport of particles from one area to the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, A. G., Nemitz, E., Shi, J. P., Harrison, R. M., & Greenwood, J. C. (2001). Size distribution of trace metals in atmospheric aerosols in the United Kingdom. Atmospheric Environment, 35, 4581–4591.

    Article  CAS  Google Scholar 

  • Balachandran, S., Meena, B. R., & Khillare, P. S. (2000). Particle size distribution and its elemental composition in the ambient air of Delhi. Environment International, 26, 49–54.

    Article  CAS  Google Scholar 

  • Bernabe, J. M., Carretero, M. I., & Galan, E. (2005). Mineralogy and origin of atmospheric particles in the industrial area of Huelva (SWSpain). Atmospheric Environment, 39, 6777–6789.

    Article  CAS  Google Scholar 

  • Bernabe, J. M., & Carretero, M. I. (2003). Caracterizacion mediante microscopı a electronica de barrido de partı culas atmosfericas del area industrial de Huelva (SW de Espana). Boletın de la Sociedad Espanola de Mineralogıa, 26, 167–177.

    Google Scholar 

  • Berube, K. A., Jones, T. P., Williamson, B. J., Winters, C., Morgan, A. J., & Richards, R. J. (1999). Physicochemical characterizations of diesel exhaust particles: Factors for assessing biological activity. Atmospheric Environment, 33, 1599–1614.

    Article  CAS  Google Scholar 

  • Breed, C. A., Arocena, J. M., & Sutherland, D. (2002). Possible sources of PM10 in Prince George (Canada) as revealed by morphology and in situ chemical composition of particulate. Atmospheric Environment, 36, 1721–1731.

    Article  CAS  Google Scholar 

  • Chabas, A., & Lefevre, R. A. (2000). Chemistry and microscopy of atmospheric particulates at Delos (Cyclades-Greece). Atmospheric Environment, 34, 225–238.

    Article  CAS  Google Scholar 

  • Chapman, R. S., Watkinson, W. P., Dreher, K. L., & Costa, D. L. (1997). Ambient particulate matter and respiratory and cardiovascular illness in adults: Particle-borne transition metals and the heart–lung axis. Environmental Toxicology and Pharmacology, 4, 331–338.

    Article  CAS  Google Scholar 

  • Conner, T. L., Norris, G. A., Landis, M. S., & Williams, R. W. (2001). Individual particle analysis of indoor, outdoor, and community samples from the 1998 Baltimore particulate matter study. Atmospheric Environment, 35, 3935–3946.

    Article  CAS  Google Scholar 

  • Conner, T. L., & Williams, R. W. (2004). Identification of possible sources of particulate matter in the personal cloud using SEM/EDX. Atmospheric Environment, 38, 5305–5310.

    Article  CAS  Google Scholar 

  • CRRI (2005). Survey conducted by the central road research institute, New Delhi on major road intersections of Delhi by TPE division in 2004–2005.

  • Donaldson, K., Li, X. Y., & MacNee, W. (1998). Ultrafine (nanometre) particle mediated lung injury. Journal of Aeronautical Sciences, 29(5&6), 553–560.

    CAS  Google Scholar 

  • Economic survey of Delhi (2005–2006). Published by the planning department, government of NCT of Delhi. New Delhi: Delhi Secretariat.

    Google Scholar 

  • Ekosse, G., van den Heever, D. J., de Jager, L., & Totolo, O. (2004). Environmental chemistry and mineralogy of particulate air matter around Selebi Phikwe nickel–copper plant, Botswana. Minerals Engineering, 17, 349–353.

    Article  CAS  Google Scholar 

  • Esbert, R. M., Diaz Pache, F., Alonso, F. J., Ordaz, J., & Grossi, C. M. (1996). Solid particles of atmospheric pollution found on the Hontoria limestone of Burgos Cathedral (Spain). In: J. Riederer (Ed.), Proceedings of the Eighth International Congress on Deterioration and Conservation Stone. Berlin, Germany, pp. 393–399.

  • Fair, G. M., Morris, J. C., Chang, S. L., Weil, I., & Burden, R. P. (1948). The behavior of chlorine as a water disinfectant. Journal of the American Water Resources Association, 40, 1051–1061.

    CAS  Google Scholar 

  • Government of India (2001). White paper on pollution in Delhi with an action plan. Ministry of environment and forests. Lodhi Road, New Delhi: Paryavaran Bhawan, C.G.O. Complex.

    Google Scholar 

  • Holleman, A. F., & Wiberg, E. (2001). Inorganic chemistry. Academic: San Diego.

    Google Scholar 

  • Liu, X., Zhu, J., Espen, P. V., Adams, F., Xiao, R., Dong, S., et al. (2005). Single particle characterization of spring and summer aerosols in Beijing: Formation of composite sulfate of calcium and potassium. Atmospheric Environment, 39, 6909–6018.

    Article  CAS  Google Scholar 

  • Ma, C. J., Kasahara, M., Holler, R., & Kamiya, T. (2001). Characteristics of single particles sampled in Japan during the Asian dust storm period. Atmospheric Environment, 35, 2707–2714.

    Article  CAS  Google Scholar 

  • Mathis, U., Kaegi, R., Mohr, M., & Zenobi, R. (2004). TEM analysis of volatile nanoparticles from particle trap equipped diesel and direct-injection spark-ignition vehicles. Atmospheric Environment, 38, 4347–4355.

    Article  CAS  Google Scholar 

  • Mehra, A., Farago, M. E., & Banerjee, D. K. (1998). Impact of fly ash from coal-fired power stations in Delhi, with particular reference to metal contamination. Environmental Monitoring and Assessment, 50, 15–35.

    Article  CAS  Google Scholar 

  • Oberdorster, G. (2001). Pulmonary effects of inhaled ultrafine particles. International Archives of Occupational and Environmental Health, 74(1), 1–8.

    Article  CAS  Google Scholar 

  • Osier, M., & Oberdorster, G. (1997). Intratracheal inhalation versus intratracheal instillation: Differences in particulate effects. Fundamental and Applied Toxicology, 40, 220–227.

    Article  CAS  Google Scholar 

  • Ostro, B. D., Hurley, S., & Lipsett, M. J. (1999). Air pollution and daily mortality in the Coachella Valley, California: A Study of PM10 dominated by coarse particles. Environmental Research Section A, 81, 231–233.

    Article  CAS  Google Scholar 

  • Petrovic, S., Urch, B., Brook, J., Datema, J., Purdham, J., Liu, L., et al. (2000). Cardiorespiratory effects of concentrated ambient PM2.5: A pilot study using controlled human exposures. Inhalation Toxicology, 12, 173–188.

    Article  CAS  Google Scholar 

  • Pina, A. A., Villasenor, G. T., Fernandez, M. M., Kudra, A. L., & Ramos, R. L. (2000). Scanning electron microscope and statistical analysis of suspended heavy metal particles in San Luis Potosi, Mexico. Atmospheric Environment, 34, 4103–4112.

    Article  CAS  Google Scholar 

  • Pina, A. A., Villasenor, G. T., Jacinto, P. S., & Fernandez, M. M. (2002). Scanning and transmission electron microscope of suspended lead-rich particles in the air of San Luis Potosi, Mexico. Atmospheric Environment, 36, 5235–5243.

    Article  Google Scholar 

  • Pope, C. A. (2000). Epidemiology of fine particulate air pollution and human health: Biologic mechanisms and who’s at risk? Environmental Health Perspectives, 108, 713–723.

    Article  CAS  Google Scholar 

  • Pope III, C. A., Dockery, D. W., & Schwartz, J. (1995). Review of epidemiological evidence of health effects of particulate air pollution. Inhalation Toxicology, 7, 1–18.

    Article  CAS  Google Scholar 

  • Querol, X., Alastuey, A., de la Rosa, J., Sanchez de la Campa, A., Plana, F., & Ruiz, C. R. (2002). Source apportionment analysis of atmospheric particulates in an industrialized urban site in southwestern Spain. Atmospheric Environment, 36, 3113–3125.

    Article  CAS  Google Scholar 

  • Querol, X., Alastuey, A., Lopez-Soler, A., Mantilla, E., & Plana, F. (1999). Mineralogy of atmospheric particles around a large coal-fire power station. Atmospheric Environment, 30, 3557–3572.

    Article  Google Scholar 

  • Rodstedth, M., Stahlberg, C., Sanden, P., & Oberg, G. (2003). Chloride imbalances in soil lysimeters. Chemoecology, 52, 381–389.

    CAS  Google Scholar 

  • Schwartz, J. (1994). Air pollution and daily mortality: A review and metal analysis. Environmental Research, 64, 36–52.

    Article  CAS  Google Scholar 

  • Shi, Z., Shao, L., Jones, T. P., Whittaker, A. G., Lu, S., Berube, K. A., et al. (2003). Characterization of airborne individual particles collected in an urban area, a satellite city and a clean air area in Beijing. Atmospheric Environment, 37, 4097–4108.

    Article  CAS  Google Scholar 

  • Srivastava, A., & Jain, V. K. (2007a). Seasonal trends in coarse and fine particle sources in Delhi by the chemical mass balance receptor model. Journal of Hazardous Materials, 144, 283–291.

    Article  Google Scholar 

  • Srivastava, A., & Jain, V. K. (2007b). A study to characterize the Suspended Particulate matters in an indoor environment in Delhi, India. Building and Environment, 42, 2046–2052.

    Article  Google Scholar 

  • Suzuki, K. (2006). Characterization of airborne particulates and associated trace metals deposited on tree bark by ICP-OES, ICP-MS, SEM-EDX and laser ablation ICP-MS. Atmospheric Environment, 40, 2626–2634.

    Article  CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33, 241–265.

    Article  Google Scholar 

  • Umbrı, A., Gervilla, J., Gala, M., & Valde, R. (1999). Caracterizacio de parti culas. Consejeri a de Medio Ambiente. Junta de Andaluci a (Ed.). Sevilla, Spain, p. 163.

  • Venugopal, B., & Luckey, T. D. (1978). Metal toxicity in mammals. New York: Plenum.

    Google Scholar 

  • X-Ray Microanalysis (2006). An introduction to energy-dispersive and wavelength-dispersive X-ray microanalysis. Oxford Instruments NanoAnalysis, Halifax Road, High Wycombe, Buckinghamshire HP12 3SE, UK, Microscopy and Analysis X-Ray Supplement, July 2006, S5–S8.

  • Xie, R. K., Seip, H. M., Leinum, J. R., Winje, T., & Xiao, J. S. (2005). Chemical characterization of individual particles (PM10) from ambient air in Guiyang City, China. Science of the Total Environment, 343, 261–272.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, A., Jain, V.K. & Srivastava, A. SEM-EDX analysis of various sizes aerosols in Delhi India. Environ Monit Assess 150, 405–416 (2009). https://doi.org/10.1007/s10661-008-0239-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0239-0

Keywords

Navigation