Skip to main content
Log in

Determination of toxic elements in waters and sediments from River Subin in the Ashanti Region of Ghana

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Waters and sediments of Subin River, which flows through the industrial and commercial areas of Kumasi in the Ashanti region of Ghana, were geochemically investigated to ascertain heavy metal pollution levels due to anthropogenic activities. The study shows preoccupying pollution levels that constitute a threat to public and ecological systems. The waters of Subin River are neutral to slightly basic, inferred from pH values of 6.89–7.65). Electric conductivity (EC) of the waters ranges from 822 to 1,821 μs/cm and the range of total dissolved solids (TDS) is from 409 to 913 mg/l. Toxic elements contents of sediments and waters from 10 sites along the river were analysed by instrumental neutron activation analysis (INAA), and Al, As, Cd, Cr, Cu and Zn were determined. The concentrations of Al, As, Cd, Cr, Cu and Zn in the waters range between 4.02–15.18, 0.007–0.16, 0.002–0.05, 0.001–0.019, 1.32–7.04 and 4.28–10.2 mg/l, respectively. The contamination factors (CF) computed for the elements indicate that with the exception of sampling site S10, the sediments are polluted with Cd. Chromium contamination in the sediments is observed at S6 and S7, where the CF values were 1.39 and 1.52, respectively. The pollution load indices (PLI) were low (<1) and ranged from 0.14 to 0.75, suggesting that the overall sediment column of the river is not polluted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alfery, A. C., Legendre, G. R., & Kaehny, W. D. (1976). The dialysis encephalopathy syndrome. Possible aluminium intoxication. New England Journal of Medicine, 294, 184–188.

    Article  Google Scholar 

  • Asami, T. (1974). Environmental pollution cadmium and zinc discharged from a Braun tube factory. Ibaraki Daigaku Nogakubu Gakujutsu Hokakn, 22, 19–23.

    CAS  Google Scholar 

  • Barona, A., Aranguiz, I., & Elias, A. (1999). Assessment of metal extraction, distribution and contamination in surface soils by a 3-step sequential extraction procedure. Chemosphere, 39, 1911–1922.

    Article  CAS  Google Scholar 

  • Baruah, N. K., Kotoky, P., Bhattacharyya, K. G., & Borah, G. C. (1996). Metal speciation in Jhanji River sediments. Science of the Total Environment, 193, 1–12.

    Article  CAS  Google Scholar 

  • Bradley, S. B. (1995). Long-term dispersal of metals in mineralized catchments by fluvial processes. In I. D. L. Foster, A. M. Gurnell, & B. W. Webb (Eds.), Sediment and Water Quality in River Catchments (pp. 161–177). Chichester: Wiley.

    Google Scholar 

  • Buykx, S. E. J., Bleijenberg, M., van der Hoop, M. A. G. T., & Loch, J. P. G. (2000). The effects of oxidation and acidification on the speciation of heavy metals in sulfide-rich freshwater sediments using a sequential extraction procedure. Journal of Environmental Monitoring, 2, 23–27.

    Article  CAS  Google Scholar 

  • Chen, Y., Bozongo, J. C., Lyons, W. B., & Miller, G. C. (1997). Inhibition of methyl mercury formation in anioxic freshwater sediments by group VI oxyanions. Environmental Toxicology and Chemistry, 6, 1568–1574.

    Article  Google Scholar 

  • Dampare, S. B., Nyarko, B. J. B., Osae, S., Akaho, E. H. K., Asiedu, D. K., Serfor-Armah, Y., et al. (2005). Simultaneous determination of tantalum, Niobium, thorium and uranium in placer columbite-tantalite from the Akim Oda District of Ghana by epithermal instrumental neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 265, 53–59.

    Article  CAS  Google Scholar 

  • Dawson, E. J., & Macklin, M. G. (1998). Speciation of trace metals in floodplain and flood sediments: a reconnaissance survey of the Aire valley, West Yorkshire, Great Britain. Environmental Geochemistry and Health, 20, 67–76.

    Article  CAS  Google Scholar 

  • Dean, J. G, Bosqui, F. L., & Lanouette, V. H. (1972). Removing heavy metals from waste water. Environmental Science and Technology, 6, 518–522.

    Article  CAS  Google Scholar 

  • Department of water affairs and forestry. (1996). Water quality guidelines, domestic use (Vol. 1, 2nd ed.). Pretoria: DWAF.

    Google Scholar 

  • Dickson, K. B., & Benneh, G. (1988). A new geography of Ghana (pp. 27–52). London: Longman.

    Google Scholar 

  • Fischer, A. B. (1987). Mutagenic effects of cadmium alone and in combination with antimutagenic selenite. Porc. 6th Int. Conf. on Heavy metals in the environment, New Orleans. CEP Consultants Ltd, Edinburgh, 2, 112–114.

    Google Scholar 

  • Frieberg, L., Elinder, C. G., Kjellstroem, T., & Nordberg, C. F. (Eds.) (1986). Cadmium and Health: A toxicological and epidemiological appraisal. Volume 11, effects and response. Boca Raton, Florida: CRC.

  • Garbarino, J. R., Antweiler, R. C., Brinton, T. I., Roth, D. A., & Taylor, H. E. (1995). Concentration and transport data for selected dissolved inorganic constituents and dissolved organic carbon in water collected from the Mississippi River and some of its tributaries, July 1991–May 1992. U.S. Geological Survey Open-File Report (pp. 95–149).

  • Gray, J. E., Theodorakos, P. M., Bailey, E. A., & Turner, R. A. (2000). Distribution, speciation and transport of mercury in stream-sediment, stream-water and fish collected near abandoned mercury mines in southwestern Alaska, USA. Science of the Total Environment, 260, 21–33.

    Google Scholar 

  • Heinrich, U. (1988). Carcinogenicity and cadmium – Overview of experimental and epidemiological results and their influence on recommendations for maximum concentrations in the occupational area. In: O. Hutzinger & S. H. Safe (Eds.) Environmental Toxins, Volume 2, Cadmium (pp. 13–15). Berlin: Springer (vols. Eds.: Stoepper, M and Piscator, M.).

  • Heitfeld, K. H., & Schottler, U. (1973). Verackert wohin? Kontamination des Wassers in Bereich von Abfallhalden durch spurenmettale. Umwelt, 1, 57–58.

    Google Scholar 

  • Herber, F. R. M., Verschoor, M. A., & Wibowo, A. A. E. (1988). A review of kinetics and kidney effects of cadmium. Recent epidemiological studies. In Hutzinger, O. & Safe, S. H. (Eds.), Environmental Toxins, Volume 2, Cadmium (pp. 115–133). Berlin: Springer. (vol. eds.: Stoeppler, M and Piscator M.).

    Google Scholar 

  • Junner, N. R. (1940). Geology of the Gold Coast and Western Togoland. Geological Survey Bulletin No. 11, 7.

  • Kazantzis, G. (1987). The mutagenic and carcinogenic effect of cadmium. An update. Journal of Toxicology and Environmental Chemistry, 15, 83–100.

    Article  CAS  Google Scholar 

  • Kjellstroem, T. (1986). Itai–itai disease. In L. Friberg, C. G. Elinder, T. Kjellistroem, & G. F. Nordberg (Eds.), Cadmium and health: A toxicological and epidemiological appraisal. Volume 11, Effects of Response (pp. 257–290). Boca Raton, Florida: CRC.

    Google Scholar 

  • Lewis, T. E. (1989). Environmental chemistry and toxicity of aluminum. Chelsea, MI: Lewis.

    Google Scholar 

  • Logar, M., Horvat, M., Akagi, H., Ando, T., Tomiyasu, T., & Fajon, V. (2001). Determination of total mercury and monomethylmercury compounds in water samples from Minamata Bay, Japan: an interlaboratory comparative study of different analytical techniques. Applied Organometallic Chemistry, 15, 515–526.

    Google Scholar 

  • Macklin, M. G., & Dowsett, R. B. (1989). The chemical and physical speciation of trace metals in fine grained overbank flood sediments in the Tyne basin, north-east England. Catena, 16, 135–151.

    Article  CAS  Google Scholar 

  • Merian, E. (Ed.) (1991). Metals and their compounds in the environment. Occurrence analysis and biological relevance. Cambridge, Weinheim, New York, Basel: VCH.

  • Mester, Z., Criemisini, C., Ghiara, E., & Morabito, R. (1998). Comparison of 2 sequential extraction procedures for metal fractionation in sediment samples. Analytica Chimica Acta, 359, 133–142.

    Article  CAS  Google Scholar 

  • Prater, B. E. (1975). The metal content and characteristics of Steework’s effluents discharging to the Tees estuary. Water Pollution Control, 74, 63–78.

    CAS  Google Scholar 

  • Rao, J. D., & Saxena, A. B. (1981). A cute toxicity of mercury, zinc, lead, cadmium, Arsenic and manganese to the chironomus sp. Internal Journal of Environmental Studies, 16, 225–226.

    Article  Google Scholar 

  • Ross, S. M., & Kaye, K. J. (1994). The meaning of metal toxicity in soil-plant systems. In S. M. Ross (Ed.), Toxic metals in soil-plant systems (pp. 27–61). Ontario: Wiley.

    Google Scholar 

  • Savory, J., & Will, M. R. (1991). Aluminum. In E. Merian (Ed.), Metals and their compounds in the environment. Occurrence, analysis and biological relevance. Cambridge, Weiheim, New York, Basel: VCH.

    Google Scholar 

  • Skidmore, J. F. (1964). Toxicity of zinc compounds in aquatic animals with special reference to fish. Quarterly Review of Biology, 39, 227–248.

    Article  CAS  Google Scholar 

  • Spear, P. A. (1981). Zinc in the aquatic environment; chemistry, distribution and toxicology. NRC of Canada. Associate Committee on Scientific Criteria for Environmental Quality. Report NRCC No 17589. Ottawa.

  • Tomlinson, D. C., Wilson, J. G., Harris, C. R., & Jeffrey D. W. (1980). Helgoländer Meeresuntersuchungen, 33, 566.

    Article  Google Scholar 

  • Tsuchiya, K. (1978). Cadmium studies in Japan – A review. Tokyo: Kodansha.

    Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Bulletin of Geological Society of America, 72, 175–192.

    Article  CAS  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency) (1982). Maximum contaminant levels (subpart B of part 141, National Interim Primary Water Regulations) U.S. Code of Federal Regulations, Title 40, Parts 100 to 149, p. 315–318 (revised as of July 1, 1982).

  • Woodworth, J. C., & Pascoe, V. (1982). Cadmium toxicity to rainbow trout, salmon gairdneri Richardson. A study of eggs and alevins. Journal of Fish Biology, 21, 47–57.

    Article  CAS  Google Scholar 

  • Wright, P., & Mason, C. F. (1996). Spatial and seasonal variation in heavy metals in the sediments and biota of two adjacent estuaries, the Orwell and the Stour, in eastern England. Science of the Total Environment, 226, 139–156.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Adomako.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adomako, D., Nyarko, B.J.B., Dampare, S.B. et al. Determination of toxic elements in waters and sediments from River Subin in the Ashanti Region of Ghana. Environ Monit Assess 141, 165–175 (2008). https://doi.org/10.1007/s10661-007-9885-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9885-x

Keywords

Navigation