Skip to main content
Log in

The interaction between concrete pavement and corrosion-induced copper runoff from buildings

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Changes in chemical speciation of copper and the capacity of concrete pavement to retain copper in runoff water from external buildings have been investigated at urban field conditions, and in parallel laboratory experiments simulating outdoor scenarios. The research study showed the concrete surface to form a copper rich surface layer (≈50 μm thick) upon exposure, and a high capacity to significantly reduce the bioavailable fraction of released copper (20–95%). The retention capacity of copper varied between 5 and 20% during single runoff events in the laboratory, and between 10 and 40% of the total copper release during single natural runoff events. The capacity to retain and reduce the bioavailable fraction of non-retained copper increased with increasing wetness of the concrete surfaces, increasing pH of the runoff water and decreasing flow rates. Bioassay testing with bacterial and yeast bioreporters showed the bioavailable fraction of non-retained copper to be significantly lower than the total copper concentration in the runoff water, between 22 and 40% for bacteria and between 8 and 31% for yeast. The application of generated data to simulate a fictive outdoor scenario, suggests a significant reduction of bioavailable and total copper to background values during environmental entry as a result of dilution, and the interaction with solid surfaces, organic matter and complexing agents already in the drainage system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achternbosch, M., Bräutigam, K. R., Gleis, M., Hartlieb, N., Kupsch, C., Richers, U., et al. (2003). Heavy metals in cement and concrete resulting from the co-interaction of wastes in cement kilns with regard to the legitimacy of waste utilization. Forschungszentrum Karlsruhe GmbH, Karlsruhe.

    Google Scholar 

  • Allison, J. D., & Brown, D. S. (1991). MinteqA2, a geochemical assessment model for environmental systems. U.S. Environmental Protection Agency, Athens, GA, EPA/6003-91021.

    Google Scholar 

  • Aziz, H. A., Othman, N., Yusuff, M. S., Basri, D. R. H., Ashaari, F. A. H., Adlan, M. N., et al. (2001). Removal of copper from water using limestone filtration technique determination of mechanism of removal. Environment International, 26, 395–399.

    Article  CAS  Google Scholar 

  • Bertling, S., Odnevall Wallinder, I., Berggren Kleja, D., & Leygraf, C. (2006a). Long term corrosion induced copper runoff from natural and artificial patina and its environmental fate. Environmental Toxicology and Chemistry, 25, 891–898.

    Article  CAS  Google Scholar 

  • Bertling, S., Odnevall Wallinder, I., Berggren Kleja, D., & Leygraf, C. (2006b). Occurence and environmental fate of corrosion-induced zinc in runoff water from external structures. Science of the Total Environment, 367, 908–923.

    Article  CAS  Google Scholar 

  • Bertling, S., Odnevall Wallinder, I., Leygraf, C., & Berggren, D. (2002). Immobilization of copper in runoff water from roofing materials by limestone, soil and concrete. (paper presented at the 15th international Corrosion Congress, paper 44, Granada).

  • Boulanger, B., & Nikolaidis, N. P. (2003). Mobility and aquatic toxicity of copper in an urban watershed. Journal of the American water Resources Association, 39, 325–336.

    Article  CAS  Google Scholar 

  • Dierkes, C., Holte, A., & Geiger, W. F. (1999). Heavy metal retention within a porous pavement structure. (8th International Conference on Urban Drainage, Sidney).

  • Dierkes, C., Kuhlmann, L., Kandasamy, J., & Angelis, G. (2002). Pollution retention capability and maintanence of permeable pavements. (9th international Conference on Urban Drainage, Portland, Oregon 8–13 Sept).

  • FitzGerald, K. P., Nairn, J., Skennerton, G., & Atrens, A. (2006) Atmospheric corrosion of copper and the colour; structure and composition of natural patinas on copper. Corrosion Science, 48, 2480–2509.

    Article  CAS  Google Scholar 

  • Grip, H., & Rodhe, A. (1985). Vattnets väg från Regn till Bäck. (Karlshamn, Sweden: Lagerblads) Tryckeri (in Swedish).

  • Hakkila, K., Green, T., Leskinen, P., Ivask, A., Marks, R., & Virta, M. (2004). Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. Journal of Applied Toxicology, 24, 333–342.

    Article  CAS  Google Scholar 

  • Harms, H., Wells, M. C., & van der Meer, J. R. (2006). Whole-cell living biosensors- are they ready for environmental application? Applied Microbiology and Biotechnology, 70, 273–280.

    Article  CAS  Google Scholar 

  • He, W., Odnevall Wallinder, I., & Leygraf, C. (2001). A comparison between corrosion rates from new and aged copper and zinc as roofing material. Water Air and Soil Pollution: Focus, 1, 67–82.

    Article  CAS  Google Scholar 

  • Ivask, A., Virta, M., & Kahru, A. (2002). Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil. Soil Biology and Biochemistry, 34, 1439–1447.

    Article  CAS  Google Scholar 

  • Karlén, C., Odnevall Wallinder, I., Heijerick, D., & Leygraf, C. (2002). Runoff rates, chemical speciation and bioavailability of copper released from naturally patinated copper. Environmental Pollution, 120, 691–700.

    Google Scholar 

  • Lampinen, J., Koivisto, L., Wahlsten, M., Mäntsälä, P., & Karp, M. (1992). Expression of luciferase genes from different origins in Bacillus subtilis. Molecular Genetics and Genomics, 232, 498–504.

    CAS  Google Scholar 

  • Landner, L., & Reuter, R. (2004). In B. J. Alloway & J. T. Trevors (Eds.), Metals in society and in the environment. The Netherlands: Kluwer

    Google Scholar 

  • LaRossa, R. A., Smulski, D. R., & Van Dyk, T. K. (1995). Interaction of lead nitrate and cadmium chloride with Escherichia coli K-12 and Salmonella typhimurium global regulatory mutants. Journal of Industrial Microbiology & Biotechnology, 14, 252–258.

    CAS  Google Scholar 

  • Leskinen, P., Michelini, E., Picard, D., Karp, M., & Virta, M. (2005). Bioluminescent yeast assays for detecting estrogenic and androgenic activity in different matrices. Chemosphere, 61, 259–266.

    Article  CAS  Google Scholar 

  • Leskinen, P., Virta, M., & Karp, M. (2003). One-step measurement of firefly luciferase activity in yeast. Yeast, 20, 1109–1113.

    Article  CAS  Google Scholar 

  • Odnevall Wallinder, I., Bertling, S., & Leygraf, C. (2004). Environmental interaction of copper and zinc released from building materials as a result of atmospheric corrosion. Metall, 58, 557–560.

    Google Scholar 

  • Odnevall Wallinder, I., Verbiest, P., He, W., & Leygraf, C. (2000). Effects of exposure direction and inclination on the runoff rates of zinc and copper roofs. Corrosion Science, 42, 1471–1487.

    Article  Google Scholar 

  • Peltola, P., Ivask, A., Astrom, M., & Virta, M. (2005). Lead and Cu in contaminated urban soils: Extraction with chemical reagents and bioluminescent bacteria and yeast. Science of the Total Environment, 350, 194–203.

    Article  CAS  Google Scholar 

  • Perkins, C., Nadim, F., & Arnold, W. R. (2005). Effects of PVC, cast iron and concrete conduit on concentrations of copper in storm water. Urban Water, 59, 634–638.

    Google Scholar 

  • Sandberg, J., Odnevall Wallinder, I., Leygraf, C., & Virta, M. (2007). Release and chemical speciation of copper from anti-fouling paints with different active copper compounds in artificial seawater. Materials Corrosion (in press). DOI: 10.1002/maco.200604002.

  • Semple, K. T., Doick, K. J., Jones, K. C., Burauel, P., Craven, A., & Harms, H. (2004). Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environmental Science & Technology, 38, 228a–231a.

    Article  CAS  Google Scholar 

  • Solioz, M., Portmann, R., & Stoyanov, J. (2003). Copper homeostasis in Enterococcus hirae. Journal of Inorganic Biochemistry, 96, 54.

    Article  Google Scholar 

  • Steiner, M., & Boller, M. (2006). Copper and zinc removal from roof runoff: From research to full-scale adsorber systems. Water Science and Technology, 53, 199–207.

    Article  CAS  Google Scholar 

  • Sundberg, R. (1998). The fate of copper released from the Vasa ship museum. Metall, 52, 230–231.

    CAS  Google Scholar 

  • Swedish Building Standards (1984). Svensk Byggnorm, utgåva 2 (in Swedish). Stockholm, Sweden: Statens Planverks Författningsstandard. ISBN 91-38-075652.

  • UNI 9944 (1991). Commissione Centrale Tecnica Dell’UNI, riunione del 10 ott. (In Italian).

  • Wong, H. S., & Buenfeld, N. R. (2003). Patch microstructure in cement-based materials: Fact or artefact? Cement and Concrete Research, 36, 990–997.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Odnevall Wallinder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahar, B., Herting, G., Wallinder, I.O. et al. The interaction between concrete pavement and corrosion-induced copper runoff from buildings. Environ Monit Assess 140, 175–189 (2008). https://doi.org/10.1007/s10661-007-9858-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-007-9858-0

Keywords

Navigation