Skip to main content
Log in

Cauchy Relations in Linear Elasticity: Algebraic and Physics Aspects

  • Research
  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The Cauchy relations distinguish between rari- and multi-constant linear elasticity theories. These relations are treated in this paper in a form that is invariant under two groups of transformations: indices permutation and general linear transformations of the basis. The irreducible decomposition induced by the permutation group is outlined. The Cauchy relations are then formulated as a requirement of nullification of an invariant subspace. A successive decomposition under rotation group allows to define the partial Cauchy relations and two types of elastic materials. We explore several applications of the full and partial Cauchy relations in physics of materials. The structure’s deviation from the basic physical assumptions of Cauchy’s model is defined in an invariant form. The Cauchy and non-Cauchy contributions to Hooke’s law and elasticity energy are explained. We identify wave velocities and polarization vectors that are independent of the non-Cauchy part for acoustic wave propagation. Several bounds are derived for the elasticity invariant parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We particularly appreciate the anonymous reviewer who provided us with such significant information and accurate references.

  2. However, in general, a decomposition of a tensor space under \(GL(3,\mathbb{R})\) need not be unique. Some explicit examples are given in [21].

  3. Equations (11), (12), and (13) first appeared in Backus [2], whose starting point seems to be the harmonic decomposition of (totally) symmetric tensors.

References

  1. Alshits, V.I., Lothe, J.: Some basic properties of bulk elastic waves in anisotropic media. Wave Motion 40(4), 297–313 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Backus, G.: A geometrical picture of anisotropic elastic tensors. Rev. Geophys. Space Phys. 8, 633–671 (1970)

    Article  Google Scholar 

  3. Baerheim, R.: Harmonic decomposition of the anisotropic elasticity tensor. Q. J. Mech. Appl. Math. 46, 391–418 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bóna, A., Bucataru, I., Slawinski, M.A.: Material symmetries of elasticity tensors. Q. J. Mech. Appl. Math. 57, 583–598 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cowin, S.C.: Properties of the anisotropic elasticity tensor. Q. J. Mech. Appl. Math. 42, 249–266 (1989). Corrigenda ibid. (1993) 46, 541–542.

    Article  MathSciNet  MATH  Google Scholar 

  6. Cowin, S.C., Mehrabadi, M.M.: The structure of the linear anisotropic elastic symmetries. J. Mech. Phys. Solids 40, 1459–1471 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cowin, S.C., Mehrabadi, M.M.: Anisotropic symmetries of linear elasticity. Appl. Mech. Rev. 48(5), 247–285 (1995)

    Article  MATH  Google Scholar 

  8. Desmorat, R., Auffray, N., Desmorat, B., Olive, M., Kolev, B.: Minimal functional bases for elasticity tensor symmetry classes. J. Elast. 147(1–2), 201–228 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elcoro, L., Etxebarria, J.: Common misconceptions about the dynamical theory of crystal lattices: Cauchy relations, lattice potentials and infinite crystals. Eur. J. Phys. 32(1), 25 (2010)

    Article  MATH  Google Scholar 

  10. Epstein, P.S.: On the elastic properties of lattices. Phys. Rev. 70(11–12), 915 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  11. Forte, S., Vianello, M.: Symmetry classes for elasticity tensors. J. Elast. 43(2), 81–108 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Forte, S., Vianello, M.: Functional bases for transversely isotropic and transversely hemitropic invariants of elasticity tensors. Q. J. Mech. Appl. Math. 51(4), 543–552 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fosdick, R.L.: (2002). Private communications

  14. Hamermesh, M.: Group Theory and Its Application to Physical Problems. Dover, New York (1969)

    MATH  Google Scholar 

  15. Haussühl, S.: Physical Properties of Crystals: An Introduction. Wiley-VCH, Weinheim (2007)

    Book  Google Scholar 

  16. Hehl, F.W., Itin, Y.: The Cauchy relations in linear elasticity theory. J. Elast. 66, 185–192 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hehl, F.W., Obukhov, Y.N.: Foundations of Classical Electrodynamics. Birkhäuser, Boston (2003)

    Book  MATH  Google Scholar 

  18. Itin, Y.: Quadratic invariants of the elasticity tensor. J. Elast. 125(1), 39–62 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Itin, Y.: Irreducible matrix resolution for symmetry classes of elasticity tensors. Math. Mech. Solids 25(10), 1873–1895 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Itin, Y., Hehl, F.W.: The constitutive tensor of linear elasticity: its decompositions, Cauchy relations, null Lagrangians, and wave propagation. J. Math. Phys. 54, 042903 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Itin, Y., Reches, S.: Decomposition of third-order constitutive tensors. Math. Mech. Solids 27(2), 222–249 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kaxiras, E.: Atomic and Electronic Structure of Solids. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  23. Lancia, M.R., Caffarelli, G.V., Podio-Guidugli, P.: Null Lagrangians in linear elasticity. Math. Models Methods Appl. Sci. 5(04), 415–427 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, 3rd. edn. Pergamon Press, Oxford (1986)

    MATH  Google Scholar 

  25. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Dover, New York (1944)

    MATH  Google Scholar 

  26. MacDonald, R.A.: Cauchy relations for second-and third-order elastic constants. Phys. Rev. B 5(10), 4139 (1972)

    Article  Google Scholar 

  27. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  28. Mochizuki, E.: Spherical harmonic decomposition of an elastic tensor. Geophys. J. Int. 93(3), 521–526 (1988)

    Article  MATH  Google Scholar 

  29. Mott, P.H., Roland, C.M.: Limits to Poisson’s ratio in isotropic materials—general result for arbitrary deformation. Phys. Scr. 87(5), 055404 (2013)

    Article  Google Scholar 

  30. Nayfeh, A.H.: Wave Propagation in Layered Anisotropic Media: With Applications to Composites. North-Holland, Amsterdam (1985)

    Google Scholar 

  31. Norris, A.N.: Acoustic axes in elasticity. Wave Motion 40(4), 315–328 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nye, J.F.: Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press, Oxford (1985)

    MATH  Google Scholar 

  33. Olive, M., Kolev, B., Desmorat, R., Desmorat, B.: Characterization of the symmetry class of an elasticity tensor using polynomial covariants. Math. Mech. Solids 27(1), 144–190 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  34. Perrin, B.: Cauchy relations revisited. Phys. Status Solidi B 91, K115–K120 (1979)

    Article  Google Scholar 

  35. Podio-Guidugli, P.: A primer in elasticity. In: Journal of Elasticity, vol. 58, pp. 1–104. Kluwer Academic Publisher, The Netherlands (2000). Reprinted (2013)

    MATH  Google Scholar 

  36. Podio-Guidugli, P.: On null-Lagrangian energy and plate paradoxes. In: Altenbach, H., Chinchaladze, N., Kienzler, R., Müller, W. (eds.) Analysis of Shells, Plates, and Beams: Advanced Structured Materials, vol. 134, pp. 367–372. Springer, Switzerland (2020)

    Chapter  MATH  Google Scholar 

  37. Rubin, M.B., Ehret, A.E.: Invariants for rari-and multi-constant theories with generalization to anisotropy in biological tissues. J. Elast. 133(1), 119–127 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rychlewski, J.: A qualitative approach to Hooke’s tensors. Part I. Arch. Mech. 52(4–5), 737–759 (2000)

    MathSciNet  MATH  Google Scholar 

  39. Rychlewski, J.: A qualitative approach to Hooke’s tensors. Part II. Arch. Mech. 53(1), 45–63 (2001)

    MathSciNet  MATH  Google Scholar 

  40. Sirotin, Y.: Decomposition of material tensors into irreducible parts. Sov. Phys. Crystallogr. 19, 565–568 (1975)

    MATH  Google Scholar 

  41. Sirotin, Y.I., Shaskol’skaya, M.P.: Principles of Crystal Physics. Nauka, Moscow (1979)

    Google Scholar 

  42. Stakgold, I.: The Cauchy relations in a molecular theory of elasticity. Q. Appl. Math. 8(2), 169–186 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  43. Weyl, H.: The Classical Groups. Princeton University Press, Princeton (2016)

    Book  Google Scholar 

  44. Zener, C.: A defense of the Cauchy relations. Phys. Rev. 71(5), 323 (1947)

    Article  Google Scholar 

Download references

Acknowledgements

F.-W. Hehl (Cologne), R.L. Fosdick (Minnesota), V. I. Alshits (Moscow), M. Vianello (Milan), A.H. Norris (Rutgers), M.B. Rubin (Haifa), and R. Segev (Beer Sheva) deserve my heartfelt thanks. I would want to thank all of the elasticity and acoustics experts with whom I have had extremely useful discussions (both online and in person) about various aspects of the Cauchy relations over the years. I appreciate the reviewers’ high level of expertise and their extremely helpful recommendations.

Author information

Authors and Affiliations

Authors

Contributions

I am an only author of this paper.

Corresponding author

Correspondence to Yakov Itin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itin, Y. Cauchy Relations in Linear Elasticity: Algebraic and Physics Aspects. J Elast (2023). https://doi.org/10.1007/s10659-023-10035-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10659-023-10035-8

Keywords

Mathematics Subject Classification

Navigation