Skip to main content
Log in

A Continuum Model for Circular Graphene Membranes Under Uniform Lateral Pressure

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Despite the numerous applications of pressurized graphene membranes in new technologies, there is still a lack of accurate mechanical models. In this work we develop a continuum model for circular graphene membranes subjected to uniform lateral pressure. We adopt a semi-inverse method by defining a simplified kinematics of deformation and we describe the material behavior with a stored energy function that takes into account both nonlinearity and anisotropy of graphene. An expression of the applied pressure as a function of the deflection of the membrane is obtained from an approximate solution of the equilibrium. The simplifying hypotheses of the analytical model are verified by a finite element (FE) analysis in nonlinear elasticity. In addition, a numerical solution of the differential equilibrium equations of the exact theory is presented. The pressure-deflection response from FE and numerical solutions agree well with the prediction of the analytical formula, demonstrating its accuracy. The analytical solution is then employed for the response of a two-layered composite membrane made of graphene deposited onto a soft substrate. This application is of great interest since new nanotechnologies make use of layered nanocomposites. Differently from our entirely nonlinear approach, most continuum models in the literature are based on the assumption of linear elastic material, which is suitable only when deformations are small. The present work gives a comprehensive description of the mechanics of pressurized graphene membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. \(\mathbf{id} (P)\) indicates the position vector of point \(P\).

  2. Unit vectors \(\mathbf{n}_{X}\) and \(\mathbf{n}_{Y}\) identify respectively directions \(X\) and \(Y\) of the Cartesian coordinate system. Symbols ⊗ and (⋅) denote dyadic product and second-order tensor contraction, respectively.

References

  1. Adkins, J.E., Rivlin, R.S.: Large elastic deformations of isotropic materials IX. The deformation of thin shells. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 244(888), 505–531 (1952)

    MathSciNet  MATH  Google Scholar 

  2. Afyouni Akbari, S., Ghafarinia, V., Larsen, T., Parmar, M.M., Villanueva, L.G.: Large suspended monolayer and bilayer graphene membranes with diameter up to 750 μm. Sci. Rep. 10(1), 1–8 (2020)

    Article  Google Scholar 

  3. Alemán, B., Regan, W., Aloni, S., Altoe, V., Alem, N., Girit, C., Geng, B., Maserati, L., Crommie, M., Wang, F., et al.: Transfer-free batch fabrication of large-area suspended graphene membranes. ACS Nano 4(8), 4762–4768 (2010)

    Article  Google Scholar 

  4. Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B., Sinnott, S.B.: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14(4), 783 (2002)

    Article  Google Scholar 

  5. Bunch, J.S., Verbridge, S.S., Alden, J.S., Van Der Zande, A.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Impermeable atomic membranes from graphene sheets. Nano Lett. 8(8), 2458–2462 (2008)

    Article  Google Scholar 

  6. Caillerie, D., Mourad, A., Raoult, A.: Discrete homogenization in graphene sheet modeling. J. Elast. 84(1), 33–68 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, C., Daly, M., Singh, C.V., Sun, Y., Filleter, T.: High strength measurement of monolayer graphene oxide. Carbon 81, 497–504 (2015)

    Article  Google Scholar 

  8. Carvalho, A.F., Fernandes, A.J., Hassine, M.B., Ferreira, P., Fortunato, E., Costa, F.M.: Millimeter-sized few-layer suspended graphene membranes. Appl. Mater. Today 21, 100879 (2020)

    Article  Google Scholar 

  9. Casey, J.: On infinitesimal deformation measures. J. Elast. 28(3), 257–269 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chae, S.H., Lee, Y.H.: Carbon nanotubes and graphene towards soft electronics. Nano Converg. 1(1), 1–26 (2014)

    Article  MathSciNet  Google Scholar 

  11. Chen, M., Haddon, R.C., Yan, R., Bekyarova, E.: Advances in transferring chemical vapour deposition graphene: a review. Mater. Horiz. 4(6), 1054–1063 (2017)

    Article  Google Scholar 

  12. Chen, Y.M., He, S.M., Huang, C.H., Huang, C.C., Shih, W.P., Chu, C.L., Kong, J., Li, J., Su, C.Y.: Ultra-large suspended graphene as a highly elastic membrane for capacitive pressure sensors. Nanoscale 8(6), 3555–3564 (2016)

    Article  Google Scholar 

  13. Chun, S., Kim, Y., Oh, H.S., Bae, G., Park, W.: A highly sensitive pressure sensor using a double-layered graphene structure for tactile sensing. Nanoscale 7(27), 11652–11659 (2015)

    Article  Google Scholar 

  14. Delfani, M.R.: Nonlinear elasticity of monolayer hexagonal crystals: Theory and application to circular bulge test. Eur. J. Mech. A, Solids 68, 117–132 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Delfani, M.R., Shodja, H.M., Ojaghnezhad, F.: Mechanics and morphology of single-walled carbon nanotubes: from graphene to the elastica. Philos. Mag. 93(17), 2057–2088 (2013)

    Article  Google Scholar 

  16. Fang, M., Wang, K., Lu, H., Yang, Y., Nutt, S.: Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 19(38), 7098–7105 (2009)

    Article  Google Scholar 

  17. Fichter, W.B.: Some solutions for the large deflections of uniformly loaded circular membranes, vol. 3658. National Aeronautics and Space Administration, Langley Research Center (1997). https://ntrs.nasa.gov/citations/19970023537

  18. Freddi, F., Royer-Carfagni, G.: From non-linear elasticity to linearized theory: examples defying intuition. J. Elast. 96(1), 1–26 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Genoese, A., Genoese, A., Rizzi, N.L., Salerno, G.: On the derivation of the elastic properties of lattice nanostructures: the case of graphene sheets. Composites, Part B, Eng. 115, 316–329 (2017)

    Article  MATH  Google Scholar 

  20. Genoese, A., Genoese, A., Salerno, G.: In-plane and out-of-plane tensile behaviour of single-layer graphene sheets: a new interatomic potential. Acta Mech. 231(7), 2915–2930 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Georgantzinos, S.K., Katsareas, D.E., Anifantis, N.K.: Graphene characterization: A fully non-linear spring-based finite element prediction. Physica E, Low-Dimens. Syst. Nanostruct. 43(10), 1833–1839 (2011)

    Article  Google Scholar 

  22. Höller, R., Libisch, F., Hellmich, C.: A membrane theory for circular graphene sheets, based on a hyperelastic material model for large deformations. Mech. Adv. Mat. Struct. 29(5), 651–661 (2022)

    Article  Google Scholar 

  23. Höller, R., Smejkal, V., Libisch, F., Hellmich, C.: Energy landscapes of graphene under general deformations: DFT-to-hyperelasticity upscaling. Int. J. Eng. Sci. 154, 103342 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hossain, M.Z., Ahmed, T., Silverman, B., Khawaja, M.S., Calderon, J., Rutten, A., Tse, S.: Anisotropic toughness and strength in graphene and its atomistic origin. J. Mech. Phys. Solids 110, 118–136 (2018)

    Article  Google Scholar 

  25. Jiang, S., Shi, S., Wang, X.: Nanomechanics and vibration analysis of graphene sheets via a 2D plate model. J. Phys. D, Appl. Phys. 47(4), 045104 (2013)

    Article  Google Scholar 

  26. Kalidindi, S.R., Franco, E.: Numerical evaluation of isostrain and weighted-average models for elastic moduli of three-dimensional composites. Compos. Sci. Technol. 57(3), 293–305 (1997)

    Article  Google Scholar 

  27. Kang, X., Wang, J., Wu, H., Liu, J., Aksay, I.A., Lin, Y.: A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81(3), 754–759 (2010)

    Article  Google Scholar 

  28. Kausar, A.: Applications of polymer/graphene nanocomposite membranes: a review. Mater. Res. Innov. 23(5), 276–287 (2019)

    Article  Google Scholar 

  29. Koenig, S.P., Boddeti, N.G., Dunn, M.L., Bunch, J.S.: Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6(9), 543–546 (2011)

    Article  Google Scholar 

  30. Korobeynikov, S.N., Alyokhin, V.V., Babichev, A.V.: On the molecular mechanics of single layer graphene sheets. Int. J. Eng. Sci. 133, 109–131 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kumar, S., Parks, D.M.: On the hyperelastic softening and elastic instabilities in graphene. Proc. R. Soc. A, Math. Phys. Eng. Sci. 471(2173), 20140567 (2015)

    Google Scholar 

  32. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    Article  Google Scholar 

  33. Li, C., Xiao, J., Guo, T., Fan, S., Jin, W.: Effects of graphene membrane parameters on diaphragm-type optical fibre pressure sensing characteristics. Mater. Res. Innov. 19(sup5), S5–17 (2015)

    Article  Google Scholar 

  34. Lin, W.H., Chen, T.H., Chang, J.K., Taur, J.I., Lo, Y.Y., Lee, W.L., Chang, C.S., Su, W.B., Wu, C.I.: A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate. ACS Nano 8(2), 1784–1791 (2014)

    Article  Google Scholar 

  35. Liu, B., Feng, X., Zhang, S.M.: The effective Young’s modulus of composites beyond the Voigt estimation due to the Poisson effect. Compos. Sci. Technol. 69(13), 2198–2204 (2009)

    Article  Google Scholar 

  36. Liu, G., Jin, W., Xu, N.: Graphene-based membranes. Chem. Soc. Rev. 44(15), 5016–5030 (2015)

    Article  Google Scholar 

  37. Lu, Q., Gao, W., Huang, R.: Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension. Model. Simul. Mater. Sci. Eng. 19(5), 054006 (2011)

    Article  Google Scholar 

  38. Lu, Q., Huang, R.: Nonlinear mechanics of single-atomic-layer graphene sheets. Int. J. Appl. Mech. 1(03), 443–467 (2009)

    Article  Google Scholar 

  39. Marianetti, C.A., Yevick, H.G.: Failure mechanisms of graphene under tension. Phys. Rev. Lett. 105(24), 245502 (2010)

    Article  Google Scholar 

  40. Mehralian, F., Firouzabadi, R.D.: A comprehensive continuum model for graphene in the framework of first strain gradient theory. Eur. Phys. J. Plus 136(7), 1–15 (2021)

    Article  Google Scholar 

  41. Miculescu, M., Thakur, V.K., Miculescu, F., Voicu, S.I.: Graphene-based polymer nanocomposite membranes: a review. Polym. Adv. Technol. 27(7), 844–859 (2016)

    Article  Google Scholar 

  42. Ni, Z., Bu, H., Zou, M., Yi, H., Bi, K., Chen, Y.: Anisotropic mechanical properties of graphene sheets from molecular dynamics. Physica B, Condens. Matter 405(5), 1301–1306 (2010)

    Article  Google Scholar 

  43. Papageorgiou, D.G., Kinloch, I.A., Young, R.J.: Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75–127 (2017)

    Article  Google Scholar 

  44. Patil, A., DasGupta, A.: Finite inflation of an initially stretched hyperelastic circular membrane. Eur. J. Mech. A, Solids 41, 28–36 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pelliciari, M., Pasca, D.P., Aloisio, A., Tarantino, A.M.: Size effect in single layer graphene sheets and transition from molecular mechanics to continuum theory. Int. J. Mech. Sci. 214, 106895 (2022)

    Article  Google Scholar 

  46. Pelliciari, M., Sirotti, S., Aloisio, A., Tarantino, A.M.: Analytical, numerical and experimental study of the finite inflation of circular membranes. Int. J. Mech. Sci. 226, 107383 (2022)

    Article  Google Scholar 

  47. Pelliciari, M., Tarantino, A.M.: Equilibrium paths for von Mises trusses in finite elasticity. J. Elast. 138(2), 145–168 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  48. Pelliciari, M., Tarantino, A.M.: Equilibrium paths of a three-bar truss in finite elasticity with an application to graphene. Math. Mech. Solids 25(3), 705–726 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Pelliciari, M., Tarantino, A.M.: Equilibrium and stability of anisotropic hyperelastic graphene membranes. J. Elast. 144(2), 169–195 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  50. Pelliciari, M., Tarantino, A.M.: A nonlinear molecular mechanics model for graphene subjected to large in-plane deformations. Int. J. Eng. Sci. 167, 103527 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  51. Pumera, M.: Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4(3), 668–674 (2011)

    Article  Google Scholar 

  52. Qi, Z., Kitt, A.L., Park, H.S., Pereira, V.M., Campbell, D.K., Neto, A.C.: Pseudomagnetic fields in graphene nanobubbles of constrained geometry: A molecular dynamics study. Phys. Rev. B 90(12), 125419 (2014)

    Article  Google Scholar 

  53. Quanshui, Z., Boehler, J.P.: Tensor function representations as applied to formulating constitutive laws for clinotropic materials. Acta Mech. Sin. 10(4), 336–348 (1994)

    Article  MATH  Google Scholar 

  54. Raccichini, R., Varzi, A., Passerini, S., Scrosati, B.: The role of graphene for electrochemical energy storage. Nat. Mater. 14(3), 271–279 (2015)

    Article  Google Scholar 

  55. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z., Koratkar, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12), 3884–3890 (2009)

    Article  Google Scholar 

  56. Saiz-Bretín, M., Domínguez-Adame, F., Malyshev, A.V.: Twisted graphene nanoribbons as nonlinear nanoelectronic devices. Carbon 149, 587–593 (2019)

    Article  Google Scholar 

  57. Shen, H., Zhang, L., Liu, M., Zhang, Z.: Biomedical applications of graphene. Theranostics 2(3), 283 (2012)

    Article  Google Scholar 

  58. Song, J., Kam, F.Y., Png, R.Q., Seah, W.L., Zhuo, J.M., Lim, G.K., Ho, P.K., Chua, L.L.: A general method for transferring graphene onto soft surfaces. Nat. Nanotechnol. 8(5), 356–362 (2013)

    Article  Google Scholar 

  59. Tao, L.Q., Zhang, K.N., Tian, H., Liu, Y., Wang, D.Y., Chen, Y.Q., Yang, Y., Ren, T.L.: Graphene-paper pressure sensor for detecting human motions. ACS Nano 11(9), 8790–8795 (2017)

    Article  Google Scholar 

  60. Wang, D., Fan, S., Jin, W.: Graphene diaphragm analysis for pressure or acoustic sensor applications. Microsyst. Technol. 21(1), 117–122 (2015)

    Article  Google Scholar 

  61. Wang, M.C., Yan, C., Ma, L., Hu, N., Chen, M.W.: Effect of defects on fracture strength of graphene sheets. Comput. Mater. Sci. 54, 236–239 (2012)

    Article  Google Scholar 

  62. Wang, P., Gao, W., Cao, Z., Liechti, K.M., Huang, R.: Numerical analysis of circular graphene bubbles. J. Appl. Mech. 80(4), 040905 (2013)

    Article  Google Scholar 

  63. Wang, Q., Hong, W., Dong, L.: Graphene “microdrums” on a freestanding perforated thin membrane for high sensitivity MEMS pressure sensors. Nanoscale 8(14), 7663–7671 (2016)

    Article  Google Scholar 

  64. Wei, X., Fragneaud, B., Marianetti, C.A., Kysar, J.W.: Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description. Phys. Rev. B 80(20), 205407 (2009)

    Article  Google Scholar 

  65. Xu, M., Paci, J.T., Oswald, J., Belytschko, T.: A constitutive equation for graphene based on density functional theory. Int. J. Solids Struct. 49(18), 2582–2589 (2012)

    Article  Google Scholar 

  66. Yang, W.H., Feng, W.W.: On axisymmetrical deformations of nonlinear membranes. J. Appl. Mech. 37(4), 1002–1011 (1970)

    Article  MATH  Google Scholar 

  67. Yanovsky, Y.G., Nikitina, E.A., Karnet, Y.N., Nikitin, S.M.: Quantum mechanics study of the mechanism of deformation and fracture of graphene. Phys. Mesomech. 12(5–6), 254–262 (2009)

    Article  Google Scholar 

  68. Yazdani, H., Hatami, K.: Failure criterion for graphene in biaxial loading–a molecular dynamics study. Model. Simul. Mater. Sci. Eng. 23(6), 065004 (2015)

    Article  Google Scholar 

  69. Yuan, J., Liu, X., Xia, H., Huang, Y.: Analytical solutions for inflation of pre-stretched elastomeric circular membranes under uniform pressure. Theor. Appl. Mech. Lett. 11, 100243 (2021)

    Article  Google Scholar 

  70. Zang, X., Zhou, Q., Chang, J., Liu, Y., Lin, L.: Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectron. Eng. 132, 192–206 (2015)

    Article  Google Scholar 

  71. Zhao, H., Min, K., Aluru, N.R.: Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett. 9(8), 3012–3015 (2009)

    Article  Google Scholar 

  72. Zhu, S.E., Krishna Ghatkesar, M., Zhang, C., Janssen, G.C.A.M.: Graphene based piezoresistive pressure sensor. Appl. Phys. Lett. 102(16), 161904 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian Ministry of University and Research (MUR) through research grant PRIN 2020 No. 2020EBLPLS on “Opportunities and challenges of nanotechnology in advanced and green construction materials” and through project FISR 2019 “Eco Earth” (code 00245). Financial support by the National Group of Mathematical Physics (GNFM-INdAM) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Pelliciari.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Analytical Solution with Transverse Contraction

After deformation, thickness \(t\) transforms into \(t' = \lambda _{Z} t\) and the deformation gradient reads [46]

$$ \left [\mathbf{F}\right ] = \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} \rho \dfrac{\partial \psi}{\partial R} \cos \psi & 0 & \lambda _{Z} \sin \psi \\ 0 & \dfrac{\rho \sin \psi}{R} & 0 \\ -\rho \dfrac{\partial \psi}{\partial R} \sin \psi & 0 & \lambda _{Z} \cos \psi \end{array}\displaystyle \right ]. $$

Rotation tensor \(\mathbf{R}\) remains unchanged and right stretch tensor \(\mathbf{U}\) becomes

$$ \left [\mathbf{U}\right ] = \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} \rho \dfrac{\partial \psi}{\partial R} & 0 & 0 \\ 0 & \dfrac{\rho \sin \psi}{R} & 0 \\ 0 & 0 & \lambda _{Z} \\ \end{array}\displaystyle \right ]. $$

The right Cauchy-Green deformation tensor and the Green-Lagrange strain tensor expressed in cylindrical coordinates assume the form

$$ \left [\mathbf{C}\right ] = \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} \lambda _{R}^{2} & 0 & 0 \\ 0 & \lambda _{\Theta}^{2} & 0 \\ 0 & 0 & \lambda _{Z}^{2} \\ \end{array}\displaystyle \right ], \qquad \left [\mathbf{E}\right ] = \frac{1}{2} \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} \lambda _{R}^{2}-1 & 0 & 0 \\ 0 & \lambda _{\Theta}^{2}-1 & 0 \\ 0 & 0 & \lambda _{Z}^{2}-1 \\ \end{array}\displaystyle \right ], $$

where \(\lambda _{R}\) and \(\lambda _{\Theta}\) are given by (2).

Strain invariants \(I_{1}\) and \(I_{2}\) become

$$ \begin{aligned} & I_{1} = \frac{1}{2} \left ( \lambda _{R}^{2} + \lambda _{\Theta}^{2} + \lambda _{Z}^{2} - 3 \right ), \\ & I_{2} = \frac{1}{4} \left ( \lambda _{R}^{2} -1 \right ) \left ( \lambda _{\Theta}^{2} -1 \right ) + \frac{1}{4} \left ( \lambda _{R}^{2} -1 \right ) \left ( \lambda _{Z}^{2} -1 \right ) + \frac{1}{4} \left ( \lambda _{\Theta}^{2} -1 \right ) \left ( \lambda _{Z}^{2} -1 \right ), \end{aligned} $$
(27)

while invariant \(I_{3}\) has the same expression as in (5). The second Piola-Kirchhoff stress tensor is computed using (7), obtaining

$$ \begin{aligned} \Sigma _{\mathit{RR}} & = \frac{\beta _{1}}{t}+\frac{\beta _{2}}{2 t} \left ( \lambda _{R}^{2}-1\right )+\frac{3 \beta _{3}}{4 t} \left (\lambda _{R}^{2}- \lambda _{\Theta }^{2}\right )^{2} \cos (6 \phi ), \\ \Sigma _{\Theta \Theta} & = \frac{\beta _{1}}{t}+ \frac{\beta _{2}}{2 t} \left (\lambda _{\Theta }^{2}-1\right ) - \frac{3 \beta _{3}}{4 t} \left (\lambda _{R}^{2}-\lambda _{\Theta }^{2} \right )^{2} \cos (6 \phi ), \\ \Sigma _{\mathit{ZZ}} & = \frac{\beta _{1}}{t}+ \frac{\beta _{2}}{2 t} \left ( \lambda _{Z}^{2}-1\right ), \\ \Sigma _{R \Theta} & = - \frac{3 \beta _{3}}{4 t} \left (\lambda _{R}^{2}- \lambda _{\Theta }^{2}\right )^{2} \sin (6 \phi ), \quad \Sigma _{R Z} = \Sigma _{\Theta Z} = 0, \end{aligned} $$
(28)

where \(\beta _{1}\), \(\beta _{2}\) and \(\beta _{3}\) are given in (8). The first Piola-Kirchhoff stress tensor is thus derived

$$ \left [ \mathbf{T}_{R} \right ] = \left [ \textstyle\begin{array}{c@{\quad}c@{\quad}c} \lambda _{R} \Sigma _{R R} \cos \psi & \lambda _{R} \Sigma _{R \Theta} \cos \psi & \lambda _{Z} \Sigma _{\mathit{ZZ}} \sin \psi \\ \lambda _{\Theta } \Sigma _{R \Theta} & \lambda _{\Theta } \Sigma _{ \Theta \Theta } & 0 \\ - \lambda _{R} \Sigma _{R R} \sin \psi & - \lambda _{R} \Sigma _{R \Theta} \sin \psi & \lambda _{Z} \Sigma _{\mathit{ZZ}} \cos \psi \\ \end{array}\displaystyle \right ]. $$

Condition \(\mathbf{T}_{R} \mathbf{n}_{Z} = \mathbf{0}\) for the membrane stress state requires that

$$ \lambda _{Z} \Sigma _{\mathit{ZZ}} \sin \psi = 0 \quad \text{and} \quad \lambda _{Z} \Sigma _{\mathit{ZZ}} \cos \psi = 0, \quad \forall \psi \in \left [0,\pi /6\right ], $$
(29)

which are satisfied only if \(\Sigma _{\mathit{ZZ}} = 0\). From this condition and recalling (28), we derive the following implicit expression of stretch \(\lambda _{Z}\):

$$ \lambda _{Z} = \sqrt{1 - 2 \frac{\beta _{1}}{\beta _{2}}}. $$
(30)

Finally, the components of the Cauchy stress tensor read

$$ \textstyle\begin{array}{lll} T_{R R} = \dfrac{\lambda _{R}}{\lambda _{\Theta } \lambda _{Z}} \Sigma _{R R} \cos ^{2}\psi , \quad &T_{\Theta \Theta} = \dfrac{\lambda _{\Theta }}{\lambda _{R} \lambda _{Z}} \Sigma _{\Theta \Theta}, \quad &T_{Z Z} = \dfrac{\lambda _{R}}{\lambda _{\Theta} \lambda _{Z}} \Sigma _{R R} \sin ^{2}\psi , \\ T_{R \Theta} = \dfrac{1}{\lambda _{Z}} \Sigma _{R \Theta} \cos \psi , \quad & T_{R Z} = - \dfrac{\lambda _{R}}{\lambda _{\Theta} \lambda _{Z}} \Sigma _{R R} \cos \psi \sin \psi , \quad & T_{\Theta Z} = - \dfrac{1}{\lambda _{Z}} \Sigma _{R \Theta} \sin \psi , \end{array} $$

with \(\lambda _{Z}\) expressed by (30).

As we did in Sect. 2, we now write the equilibrium in the neighborhood of the central point of the membrane. With this aim, we firstly compute the Cauchy stress tensor for the limit case of \(R \rightarrow 0\). Radial and circumferential stretches are equal to each other (\(\lambda _{R} = \left .\lambda _{\Theta}\right |_{R \rightarrow 0} = \lambda \)) and third invariant \(I_{3}\) goes to zero. The only non-zero components of the Cauchy stress tensor are

$$ \left .T_{R R}\right |_{{R \rightarrow 0}} = \left .T_{\Theta \Theta} \right |_{R \rightarrow 0} = T_{0} = \frac{\psi _{0}^{2} \csc \psi _{0}^{2} - \left .\lambda _{Z}^{2}\right |_{{R \rightarrow 0}}}{2 t \left .\lambda _{Z}\right |_{{R \rightarrow 0}}} \left .\beta _{2}\right |_{{R \rightarrow 0}}. $$
(31)

Hereinafter, for the sake of simplicity, we indicate \(\left .\lambda _{Z}\right |_{{R \rightarrow 0}}\) simply with \(\lambda _{Z}\). Equilibrium equation (13) becomes

$$ p = \frac{2 T_{0} \lambda _{Z} t}{\rho}, $$
(32)

from which, using (31), (8) and (27), we derive the following expression of the applied pressure:

$$ p = \frac{\sin \psi _{0}}{8 a} \left ( \psi _{0}^{2} \csc ^{2} \psi _{0} - \lambda _{Z}^{2} \right ) \sum _{j=0}^{3} \zeta _{j} \psi _{0}^{2 j} \csc ^{2 j} \psi _{0}, $$
(32)

where

$$ \begin{aligned} \zeta _{0} = & \; \lambda _{Z}^{2} \bigl[\lambda _{Z}^{2} \left (5 c_{10} \lambda _{Z}^{2}-c_{11} \lambda _{Z}^{2}-25 c_{10}-3 c_{11}+4 c_{12}\right )+8 c_{7} \left (\lambda _{Z}^{2}-4\right )-2 c_{9} \left (\lambda _{Z}^{2}+2\right ) \\ &{}-4 c_{6}+8 c_{8}+9 \left (5 c_{10}+3 c_{11}-2 c_{12}\right )\bigr] \\ & + 12 c_{5} \left (\lambda _{Z}^{2}-3\right )-8 c_{2}+16 c_{4}+3 \left (4 c_{6}+16 c_{7}-4 c_{8}+2 c_{9}-15 c_{10}-9 c_{11}+6 c_{12}\right ), \\ \zeta _{1} = & \; 2 \lambda _{Z}^{2} \left [3 c_{11} \left (\lambda _{Z}^{2}-8\right )-2 c_{12} \left (\lambda _{Z}^{2}-7\right )+5 c_{10} \left (\lambda _{Z}^{2}-4\right )-4 c_{8}+4 c_{9}\right ]+16 c_{7} \left (\lambda _{Z}^{2}-4\right ) \\ & + 24 c_{5}-8 c_{6}+16 c_{8}-8 c_{9}+90 c_{10}+54 c_{11}-36 c_{12}, \\ \zeta _{2} = & \; 2 \left [c_{12} \left (11-5 \lambda _{Z}^{2}\right )+5 c_{10} \left (\lambda _{Z}^{2}-7\right )+3 c_{11} \left (3 \lambda _{Z}^{2}-5\right )+12 c_{7}-2 c_{8}\right ], \\ \zeta _{3} = & \; 4 \left (5 c_{10}+c_{11}-c_{12}\right ). \end{aligned} $$

An explicit expression of stretch \(\lambda _{Z}\) is derived by satisfying condition (29) for the limit case of \(R \rightarrow 0\), for which \(\lambda _{R} = \left .\lambda _{\Theta}\right |_{R \rightarrow 0} = \lambda \). In this case, substitution of (8) and (27) into (30) gives

$$ \sqrt{\eta} - \sqrt{\frac{\Delta _{n}}{\Delta _{d}}} = 0, $$
(33)

with \(\eta = \lambda _{Z}^{2}\) and

$$\begin{aligned} \Delta _{n} = & -8 c_{2} \left (\eta +2 \lambda ^{2}-2\right ) +16 c_{4} +12 c_{5} \left [-\eta +2 \left (\eta -1\right ) \lambda ^{2}+ \lambda ^{4}\right ] \\ & -4 c_{6} \left [\eta ^{2}-7 \eta +2 \left (3 \eta -7\right ) \lambda ^{2}+5 \lambda ^{4}+9\right ] \\ & +8 c_{7} \left [-\eta ^{2}+5 \eta +\left (5 \eta -8\right ) \lambda ^{4}+2 \left (\eta -5\right ) \left (\eta -1\right ) \lambda ^{2}+2 \lambda ^{6}-3\right ] \\ & -4 c_{8} \left (\lambda -1\right ) \left ( \lambda +1\right ) \left (2 \eta +\lambda ^{2}-3\right ) \left (\eta +2 \lambda ^{2}-2\right ) \\ & -2 c_{9} \left [\eta ^{3}-4 \eta ^{2}+11 \eta +2 \left (\eta -7 \right ) \lambda ^{4}+2 \left (\eta ^{2} -6 \eta +11 \right ) \lambda ^{2}+4 \lambda ^{6}-12\right ] \\ & +5 c_{10} \bigl\{ -\eta ^{3}+6 \eta ^{2}-15 \eta +8 \left (\eta -2 \right ) \lambda ^{6}+\left [\eta \left (5 \eta -32\right )+33\right ] \lambda ^{4} \\ &+2 \left (\eta -1\right ) \left [\left (\eta -6\right ) \eta +15\right ] \lambda ^{2}+3 \lambda ^{8}+9\bigr\} \\ & -c_{11} \bigl\{ \eta \left [\left (\eta -5\right ) \eta ^{2}+9 \right ]+8 \left (1-2 \eta \right ) \lambda ^{6}-3 \left [5 \left ( \eta -4\right ) \eta +9\right ] \lambda ^{4} \\ &+2 \left [\eta \left ( \eta ^{2}+9 \eta -27\right )+9\right ] \lambda ^{2}+\lambda ^{8} \bigr\} \\ & -c_{12} \left (\lambda -1\right ) \left (\lambda +1\right ) \left (2 \eta +\lambda ^{2}-3\right ) \left [2 \left (\eta -6\right ) \eta +10 \eta \lambda ^{2}+9 \lambda ^{4}-24 \lambda ^{2}+15\right ], \\ \Delta _{d} = & -8 c_{2}+16 c_{4} +12 c_{5} \left (\eta +2 \lambda ^{2}-3 \right )-4 c_{6} \left (\eta +2 \lambda ^{2}-3\right ) \\ & + 8 c_{7} \left [\eta ^{2}+2 (\eta -4) \lambda ^{2}-4 \eta +3 \lambda ^{4}+6 \right ] \\ & -4 c_{8} \left (\lambda ^{2}-1\right ) \left (2 \eta +\lambda ^{2}-3 \right )-2 c_{9} \left (\eta -1\right ) \left (\eta -4 \lambda ^{2}+3 \right ) \\ & +5 c_{10} \left (\eta +2 \lambda ^{2}-3\right ) \left [ \left (\eta -2\right ) \eta +2 \lambda ^{4}-4 \lambda ^{2}+3\right ] \\ & -c_{11} \left (\eta +2 \lambda ^{2}-3\right ) \left [\eta ^{2}+4 (3-2 \eta ) \lambda ^{2}+6 \eta -2 \lambda ^{4}-9\right ] \\ & -2 c_{12} \left ( \lambda -1\right ) \left (\lambda +1\right ) \left (2 \eta +\lambda ^{2}-3 \right ) \left (\eta +2 \lambda ^{2}-3\right ). \end{aligned}$$

Equation (33) admits four solutions in \(\eta \). Two solutions are not real and another one does not respect condition \(\eta = 1\) when \(\lambda = 1\). The remaining solution is the correct one. We do not report this solution due to its very long mathematical expression. Having obtained an explicit expression for \(\eta \), we compute \(\lambda _{Z} = \sqrt{\eta}\) and by substitution into (32) we finally derive the pressure-deflection equation. We recall that relation \(\psi _{0} = 2 \arctan \bar{\delta}\) allows us to obtain a direct expression of pressure as a function of deflection.

Appendix B: Fichter’s Model

Fichter’s model is based on the assumption that the material is linearly elastic. In this case, the equilibrium equations are

$$ \begin{aligned} & N^{2} \left ( \bar{R}^{2} \frac{d^{2} N}{d \bar{R}^{2}} + 3 \bar{R} \frac{d N}{d \bar{R}} \right ) - \frac{1}{2} \bar{R}^{3} \frac{d N}{d \bar{R}} + \frac{1}{2} \left ( 3 + \nu \right ) \bar{R}^{2} N + \frac{1}{4} \frac{\bar{R}^{2} E H}{p L} = 0, \\ & N \frac{d \bar{\delta}}{d \bar{R}} + \frac{1}{2} \bar{R} = 0, \end{aligned} $$
(34)

where \(\bar{R} = R/a\), \(E\) is the Young’s modulus, \(\nu \) is the Poisson’s ratio and \(N = N_{R}/(p a)\), with \(N_{R}\) indicating the radial stress resultant. Young’s modulus and Poisson’s ratio of graphene are computed using (18), obtaining \(E = 1042.9\) GPa and \(\nu = 0.146\). The solution for both stress resultant and deflection is found in the form of a power series

$$ \begin{aligned} & N \left ( \bar{R} \right ) = \sum _{0}^{\infty }n_{2 m} \bar{R}^{2 m}, \\ & \bar{\delta} \left ( \bar{R} \right ) = \sum _{0}^{\infty }w_{2 n} \left ( 1 - \bar{R}^{2 n + 2} \right ). \end{aligned} $$
(35)

Substituting (35)1 into (34)1 and equating coefficients of like powers of \(\bar{R}\) we obtain a system of equations that allows to derive the expressions of coefficients \(n_{2 m}\) as functions of \(n_{0}\). Likewise, substituting (35)2 into (34)2 and equating coefficients of like powers of \(\bar{R}\) we derive the expressions of coefficients \(w_{2 n}\) as functions of \(n_{0}\). Finally, \(n_{0}\) is evaluated by imposing the following boundary condition on radial displacement:

$$ \left .\left \{ \bar{R} \left [ \frac{d}{d \bar{R}} \left ( \bar{R} N \right ) - \nu N - \bar{R} \frac{d \bar{\delta}}{d \bar{R}} \right ] \right \}\right |_{\bar{R}=1} = 0. $$
(36)

This procedure was implemented in software Wolfram Mathematica. A vector of increasing pressure values was defined and, for each value, the solution was obtained by considering twelve terms in the power series (\(m = 12\) and \(n = 12\)). More terms did not cause sensible variations in the solutions and only increased the computational burden.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelliciari, M., Tarantino, A.M. A Continuum Model for Circular Graphene Membranes Under Uniform Lateral Pressure. J Elast 151, 273–303 (2022). https://doi.org/10.1007/s10659-022-09937-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-022-09937-w

Keywords

Mathematics Subject Classification (2010)

Navigation