Skip to main content
Log in

Homogenization Approach and Bloch-Floquet Theory for Band-Gap Prediction in 2D Locally Resonant Metamaterials

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

This paper provides a detailed comparison of the two-scale homogenization method and of the Bloch-Floquet theory for the determination of band-gaps in locally resonant metamaterials. A medium composed by a stiff matrix with soft inclusions with 2D periodicity is considered and the equivalent mass density of the homogenized medium is explicitly obtained both for in-plane and out-of-plane wave propagation through two-scale asymptotic expansion. The intervals of frequency where the effective mass is negative identify the band-gaps of the material. The Bloch-Floquet problem is then considered and, through an asymptotic analysis, its is shown that it leads to the same prediction of the band-gaps. The results are confirmed by some examples and the limits of the asymptotic approach are explicitly given and numerically verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Åberg, M., Gudmundson, P.: The usage of standard finite element codes for computation of dispersion relations in materials with periodic microstructure. J. Acoust. Soc. Am. 102(4), 2007–2013 (1997)

    Article  ADS  Google Scholar 

  2. Allaire, G.: Homogenization and 2-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  MathSciNet  Google Scholar 

  3. Allaire, G., Briane, M., Vanninathan, M.: A comparison between two-scale asymptotic expansions and Bloch wave expansions for the homogenization of periodic structures. Bol. Soc. Esp. Mat. Apl. 73(3), 237–259 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Antonakakis, T., Craster, R.V., Guenneau, S.: Homogenisation for elastic photonic crystals and dynamic anisotropy. J. Mech. Phys. Solids 71(1), 84–96 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  5. Auriault, J.L., Bonnet, G.: Dynamique des composites élastiques périodiques. Arch. Mech. 37, 269–284 (1985)

    MATH  Google Scholar 

  6. Auriault, J.L., Boutin, C.: Long wavelength inner-resonance cut-off frequencies in elastic composite materials. Int. J. Solids Struct. 49(23–24), 3269–3281 (2012)

    Article  Google Scholar 

  7. Brillouin, L.: Wave Propagation in Periodic Structures. Dover, New York (1953)

    MATH  Google Scholar 

  8. Colombi, A., Roux, P., Guenneau, S., Gueguen, P., Craster, R.V.: Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances. Sci. Rep. 6(2015), 1–7 (2016)

    Google Scholar 

  9. Comi, C., Driemeier, L.: Metamaterials for crashworthiness of small cars. In: Ascione, L., Berardi, V., Feo, L., Fraternali, F., Tralli, A. (eds.) AIMETA 2017—Proc. 23rd Conf. Ital. Assoc. Theor. Appl. Mech. (2017)

    Google Scholar 

  10. Comi, C., Driemeier, L.: Wave propagation in cellular locally resonant metamaterials. Lat. Am. J. Solids Struct. 15(4), 1–15 (2018)

    Article  Google Scholar 

  11. Craster, R.V., Kaplunov, J., Pichugin, A.V.: High-frequency homogenization for periodic media. Proc. R. Soc. A, Math. Phys. Eng. Sci. 466(2120), 2341–2362 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  12. D’Alessandro, L., Belloni, E., D’Alò, G., Daniel, L., Ardito, R., Corigliano, A., Braghin, F.: Modelling and experimental verification of a single phase three-dimensional lightweight locally resonant elastic metamaterial with complete low frequency bandgap. In: 11th Int. Congr. Eng. Mater. Platforms Nov. Wave Phenomena, Metamaterials 2017, pp. 70–77 (2017)

    Google Scholar 

  13. Dautray, R., Lions, J.L.: Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Spectre des Opérateurs, vol. 5. Masson, Paris (1988)

    MATH  Google Scholar 

  14. Hsu, J.C., Wu, T.T.: Lamb waves in binary locally resonant phononic plates with two-dimensional lattices. Appl. Phys. Lett. 90(20), 201904 (2007)

    Article  ADS  Google Scholar 

  15. Kittel, C.: Introduction to Solid State Physics, 7th edn. Wiley, New York (1996)

    MATH  Google Scholar 

  16. Krushynska, A.O., Kouznetsova, V.G., Geers, M.G.D.: Towards optimal design of locally resonant acoustic metamaterials. J. Mech. Phys. Solids 71(1), 179–196 (2014)

    Article  ADS  Google Scholar 

  17. Léné, F., Duvaut, G.: Résultats d’isotropie pour des milieux homogénéisés. C. R. Acad. Sci. Paris, Sér. II 293, 477–480 (1981)

    MathSciNet  MATH  Google Scholar 

  18. Liu, Z., Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y.: Locally resonant sonic materials. Science 289(5485), 1734–1736 (2000)

    Article  ADS  Google Scholar 

  19. Lv, H., Tian, X., Wang, M.Y., Li, D.: Vibration energy harvesting using a phononic crystal with point defect states. Appl. Phys. Lett. 102(3), 2013–2016 (2013)

    Article  Google Scholar 

  20. Marigo, J.J., Maurel, A., Pham, K., Sbitti, A.: Effective dynamic properties of a row of elastic inclusions: the case of scalar shear waves. J. Elast. 128(2), 265–289 (2017)

    Article  MathSciNet  Google Scholar 

  21. Pham, K., Maurel, A., Marigo, J.J.: Two scale homogenization of a row of locally resonant inclusions—the case of anti-plane shear waves. J. Mech. Phys. Solids 106, 80–94 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. Phani, A.S., Woodhouse, J., Fleck, N.A.: Wave propagation in two-dimensional periodic lattices. J. Acoust. Soc. Am. 119(4), 1995–2005 (2006)

    Article  ADS  Google Scholar 

  23. Sanchez-Palencia, E., Sanchez-Hubert, J.: Introduction aux méthodes asymptotiques et à l’homogénéisation. Application à la mécanique des milieux continus. Masson, Paris (1992)

    Google Scholar 

  24. Wang, G., Wen, X., Wen, J., Shao, L., Liu, Y.: Two-dimensional locally resonant phononic crystals with binary structures. Phys. Rev. Lett. 93(15), 154302 (2004)

    Article  ADS  Google Scholar 

  25. Xu, X., Barnhart, M.V., Li, X., Chen, Y., Huang, G.: Tailoring vibration suppression bands with hierarchical metamaterials. J. Sound Vib. 442, 237–248 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The first Author wishes to thank the Colleagues of École polytechnique for kind hospitality and the Laboratoire de Mécanique des Solides, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Comi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comi, C., Marigo, JJ. Homogenization Approach and Bloch-Floquet Theory for Band-Gap Prediction in 2D Locally Resonant Metamaterials. J Elast 139, 61–90 (2020). https://doi.org/10.1007/s10659-019-09743-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-019-09743-x

Keywords

Mathematics Subject Classification (2010)

Navigation