Skip to main content
Log in

Marker-assisted pyramiding of Ty-2, Ty-3, Ph-2, and Ph-3 genes for combined resistance to tomato leaf curl and late blight diseases in tomato (Solanum lycopersicum L.)

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The production of tomato (Solanum lycopersicum L.) often suffers a significant yield loss due to the extensive occurrence of leaf curl disease, which is caused by begomoviruses transmitted by whiteflies, and the presence of late blight caused by oomycetes, Phytophthora infestans (Mont.) De Bary. Resistance to begomovirus and late blight disease is an important breeding goal of many tomato breeding programs. The present study was conducted to pyramid Ty-2, Ty-3, Ph-2, and Ph-3 for combined resistance against begomovirus and late blight through marker-assisted selection. Seven stable pyramided lines differing in fruit characteristics and other horticultural traits were developed and assessed for resistance to tomato leaf curl disease using whitefly-mediated virus inoculation. Reaction to late blight resistance in these pyramided lines was examined through the whole plant assay and the detached-leaflet method. Pyramiding of Ty-2, Ty-3, Ph-2, and Ph-3 genes in tomato lines showed a high degree of combined resistance against both diseases, with acceptable yield and other horticultural features. The experiment on the late blight resistance also showed that Ph-3 is crucial to achieving a high degree of resistance to P. infestans prevailing in India. The constraints of utilizing resistance governed by a single gene and the significance of utilizing marker-assisted gene pyramiding are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ammara, U., Al-Sadi, A. M., Al-Shihi, A., & Amin, I. (2017). Real-time qPCR assay for the TYLCV titer in relation to symptoms-based disease severity scales. International Journal of Agriculture and Biology, 19, 145–151.

    Google Scholar 

  • Barbieri, M., Acciarri, N., Sabatini, E., Sardo, L., Accotto, G. P., & Pecchioni, N. (2010). Introgression of resistance to two Mediterranean virus species causing tomato yellow leaf curl into a valuable traditional tomato variety. Journal of Plant Pathology, 92, 485–493.

    CAS  Google Scholar 

  • Black, L. L., Wang, T. C., Hanson, P. M., & Chen, J. T. (1996). Late blight resistance in four wild tomato accessions: effectiveness in diverse locations and inheritance of resistance. Phytopathology, 86(11), 24.

    Google Scholar 

  • Chen, C. H., Sheu, Z. M., & Wang, T. C. (2008). Host specificity and tomato-related race composition of Phytophthora infestans isolates in Taiwan during 2004 and 2005. Plant Disease, 92, 751–755.

    CAS  PubMed  Google Scholar 

  • Chowdappa, P., Kumar, N. B., Madhura, S., Kumar, M. S., Myers, K. L., Fry, W. E., Squires, J. N., & Cooke, D. E. (2013). Emergence of 13_A2 blue lineage of Phytophthora infestans was responsible for severe outbreaks of late blight on tomato in south-west India. Journal of Phytopathology, 16, 49–58.

    Google Scholar 

  • Chowdappa, P., Kumar, N. B., Madhura, S., Kumar, M. S., Myers, K. L., Fry, W. E., & Cooke, D. E. (2015). Severe outbreaks of late blight on potato and tomato in South India caused by recent changes in the Phytophthora infestans population. Plant Pathology, 64, 191–199.

    CAS  Google Scholar 

  • Chunwongse, J., Chunwongse, C., Black, L., & Hanson, P. (2002). Molecular mapping of the Ph-3 gene for late blight resistance in tomato. The Journal of Horticultural Science and Biotechnology, 77, 281–286.

    CAS  Google Scholar 

  • Cohen, Y. (2002). Populations of Phytophthora infestans in Israel underwent three major genetic changes during 1983 to 2000. Phytopathology, 92, 300–307.

    PubMed  Google Scholar 

  • Ddamulira, G., Mukankusi, C., Ochwo-Ssemakula, M., Edema, R., Sseruwagi, P., & Gepts, P. (2015). Gene pyramiding improved resistance to angular leaf spot in common bean. American Journal of Experimental Agriculture, 9, 1–12.

    CAS  Google Scholar 

  • Dey, T., Saville, A., Myers, K., Tewari, S., Cooke, D. E., Tripathy, S., Fry, W. E., Ristaino, J. B., & Roy, S. G. (2018). Large sub-clonal variation in Phytophthora infestans from recent severe late blight epidemics in India. Scientific Reports, 8(1), 4429.

    PubMed  PubMed Central  ADS  Google Scholar 

  • Dong, P., Han, K., Siddique, M. I., Kwon, J. K., Zhao, M., Wang, F., & Kang, B. C. (2016). Gene-Based Markers for the Tomato Yellow Leaf Curl Virus Resistance Gene Ty-3. Plant Breeding and Biotechnology., 4(1), 79–86.

    Google Scholar 

  • Ferreira, J. J., Campa, A., Pérez-Vega, E., Rodríguez-Suárez, C., & Giraldez, R. (2012). Introgression and pyramiding into common bean market class fabada of genes conferring resistance to anthracnose and potyvirus. Theoretical and Applied Genetics, 124, 777–788.

    PubMed  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2021). FAOSTAT statistical database [Rome]: FAO.

  • Foolad, M. R., Sullenberger, M. T., Ohlson, E. W., & Gugino, B. C. (2014). Response of accessions within tomato wild species, Solanum pimpinellifolium to late blight. Plant Breeding, 133, 401–411.

    CAS  Google Scholar 

  • Fry, W. E. (2008). Phytophthora infestans: the plant (and R gene) destroyer. Molecular Plant Pathology, 9, 385–402.

    PubMed  PubMed Central  Google Scholar 

  • Garcia, B. E., Graham, E., Jensen, K. S., Hanson, P., Mejia, L., & Maxwell, D. P. (2007). Co-dominant SCAR marker for detection of the begomovirus-resistance Ty-2 locus derived from Solanum habrochaites in tomato germplasm. Report of the Tomato Genetics Cooperative, 57, 21–24.

    Google Scholar 

  • Gardner, R. G., & Panthee, D. R. (2010). NC1CELBR and NC2CELBR: early blight and late blight resistant fresh market tomato breeding lines. HortScience, 45, 975–976.

    Google Scholar 

  • Hanson, P., Lu, S. F., Wang, J. F., Chen, W., Kenyon, L., Tan, C. W., Tee, K. L., Wang, Y. Y., Hsu, Y. C., Schafleitner, R., & Ledesma, D. (2016). Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Scientia Horticulturae, 201, 346–354.

    CAS  Google Scholar 

  • Hanson, P. M., Bernacchi, D., Green, S., Tanksley, S. D., Muniyappa, V., Padmaja, S., Chen, H. M., Kuo, G., Fang, D., & Chen, J. T. (2000). Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. Journal of the American Society for Horticultural Science, 125, 15–20.

    CAS  Google Scholar 

  • Hutton, S. F., & Scott, J. W. (2014). Ty-6, a major begomovirus resistance gene located on chromosome 10. Report of the Tomato Genetics Cooperative, 64, 14–18.

    Google Scholar 

  • Hutton, S. F., Scott, J. W., & Schuster, D. J. (2012). Recessive resistance to tomato yellow leaf curl virus from the tomato cultivar Tyking is located in same region as Ty-5 on chromosome 4. Journal of the American Society for Horticultural Science, 47, 324–327.

    Google Scholar 

  • Irzhansky, I., & Cohen, Y. (2006). Inheritance of resistance against Phytophthora infestans in Lycopersicon pimpinellifolium L3707. Euphytica, 149, 309–316.

    Google Scholar 

  • Ji, Y., Scott, J. W., & Schuster, D. J. (2009). Towards fine mapping of the Tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. Hort Science, 44, 614–618.

    Google Scholar 

  • Kaushal, A., Sadashiva, A. T., Krishna Reddy, M., Srinivasa Rao, E., Singh, T. H., Sriram, S., Dhananjay, M. V., Venugopalan, R., & Ravishankar, K. V. (2020). Assessment of the effectiveness of Ty genes in tomato against tomato leaf curl Bangalore virus. Plant Pathology, 69(9), 1777–1786.

    CAS  Google Scholar 

  • Kim, M.J., & Mutschler, M.A. (2003). Late blight resistance of L. pimpinellifolium L3708: Characterization and transfer to processing tomato. Tomato Breeders Round Table. http://ce.byu.edu/cw/tomato.

  • Koeda, S., Fujiwara, I., Oka, Y., Kesumawati, E., Zakaria, S., & Kanzaki, S. (2020). Ty-2 and Ty-3a conferred resistance are insufficient against tomato yellow leaf curl Kanchanaburi virus from Southeast Asia in single or mixed infections of tomato. Plant Disease, 104(12), 3221–3229.

    CAS  PubMed  Google Scholar 

  • Kumar, A., Jindal, S. K., Dhaliwal, M. S., Sharma, A., Kaur, S., & Jain, S. (2019). Gene pyramiding for elite tomato genotypes against ToLCV (Begomovirus spp.), late blight (Phytophthora infestans) and RKN (Meloidogyne spp.) for northern India farmers. Physiology and Molecular Biology of Plants, 25, 1197–1209.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S. M., Chowdappa, P., & Krishna, V. (2015). Development of seed coating formulation using consortium of Bacillus subtilis OTPB1 and Trichoderma harzianum OTPB3 for plant growth promotion and induction of systemic resistance in field and horticultural crops. Indian Phytopathology, 68(1), 25–31.

    Google Scholar 

  • Lapidot, M. (2007). Screening for TYLCV-resistance plants using whitefly-mediated inoculation. In Tomato yellow leaf curl virus disease (pp. 329–342). Springer.

    Google Scholar 

  • Lapidot, M., & Friedmann, M. (2002). Breeding for resistance to whitefly-transmitted geminiviruses. Annals of Applied Biology, 140, 109–127.

    Google Scholar 

  • Lapidot, M., Friedmann, M., Lachman, O., Yehezkel, A., Nahon, S., Cohen, S., & Pilowsky, M. (1997). Comparison of resistance level to tomato yellow leaf curl virus among commercial cultivars and breeding lines. Plant Disease, 81, 1425–1428.

    PubMed  Google Scholar 

  • Li, J. F., Li, L., & Sheen, J. (2010). Protocol: a rapid and economical procedure for purification of plasmid or DNA with diverse applications in plant biology. Plants methods., 6, 1–8.

    Google Scholar 

  • Li, J., Liu, L., Bai, Y., Finkers, R., Wang, F., Du, Y., Yang, Y., Xie, B., Visser, R. G. F., & van Heusden, A. W. (2011). Identification and mapping of quantitative resistance to late blight (Phytophthora infestans) in Solanum habrochaites LA1777. Euphytica, 179, 427–438.

    Google Scholar 

  • Merk, H. L., Ashrafi, H., & Foolad, M. R. (2012). Selective genotyping to identify late blight resistance genes in an accession of the tomato wild species Solanum pimpinellifolium. Euphytica, 187, 63–75.

    Google Scholar 

  • Mizubuti, E. S. G. (2005). Custo da Requeima. Cultivar-Hortaliças Frutas, 32, 23–26.

    Google Scholar 

  • Moreau, P., Thoquet, P., Olivier, J., Laterrot, H., & Grimsley, N. (1998). Genetic mapping of Ph-2, a single locus controlling partial resistance to Phytophthora infestans in tomato. Molecular Plant-Microbe Interaction, 11, 259–269.

    CAS  Google Scholar 

  • Noris, E., & Miozzi, L. (2015). Real-time PCR protocols for the quantification of the begomovirus tomato yellow leaf curl sardinia virus in tomato plants and in its insect vector. In Plant Virology Protocols (pp. 61–72). Humana Press.

    Google Scholar 

  • Nowicki, M., Foolad, M. R., Nowakowska, M., & Kozik, E. U. (2012). Potato and tomato late blight caused by Phytophthora infestans: an overview of pathology and resistance breeding. Plant Disease, 96, 4–17.

    PubMed  Google Scholar 

  • Ohnishi, J., Yamaguchi, H., & Saito, A. (2016). Analysis of the Mild strain of tomato yellow leaf curl virus, which overcomes Ty-2 gene–mediated resistance in tomato line H24. Archives of Virology, 161, 2207–2217.

    CAS  PubMed  Google Scholar 

  • Ojiewo, C. O., Swai, I. S., Oluoch, M. O., Silué, D., Nono-Womdim, R., Hanson, P., Black, L., & Wang, T. C. (2010). Development and release of late blight-resistant tomato varieties ‘Meru’and ‘Kiboko’. International Journal of Vegetable Science, 16(2), 134–147.

    Google Scholar 

  • Oyarzun, P. J., Pozo, A., Ordonez, M. E., Doucett, K., & Forbes, G. A. (1998). Host specificity of Phytophthora infestans on tomato and potato in Ecuador. Phytopathology, 88, 265–271.

    CAS  PubMed  Google Scholar 

  • Ozkaynak, E., Devran, Z., Kahveci, E., Doganlar, S., Baskoylu, B., Dogan, F., Isleyen, M., Yukse, A., & Yuksel, M. (2014). Pyramiding multiple genes for resistance to PVY, TSWV and PMMoV in pepper using molecular markers. European Journal of Horticultural Science, 79, 233–239.

    Google Scholar 

  • Pachner, M., Paris, H. S., Winkler, J., & Lelley, T. (2015). Phenotypic and marker-assisted pyramiding of genes for resistance to zucchini yellow mosaic virus in oilseed pumpkin (Cucurbita pepo). Plant Breeding, 134(1), 121–128.

    CAS  Google Scholar 

  • Panno, S., Davino, S., Caruso, A. G., Bertacca, S., Crnogorac, A., Mandić, A., Noris, E., & Matić, S. (2021). A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the mediterranean basin. Agronomy, 11(11), 2188.

    Google Scholar 

  • Panthee, D. R., Gardner, R. G., Ibrahem, R., & Anderson, C. (2015). Molecular markers associated with Ph-3 gene conferring late blight resistance in tomato. American Journal of Plant Sciences., 6(13), 2144.

    CAS  Google Scholar 

  • Peirce, L. C. (1971). Linkage tests with Ph conditioning resistance to race 0, Phytophthora infestans. Report of the Tomato Genetics Cooperative, 21, 30.

    Google Scholar 

  • Prabhandakavi, P., Pogiri, R., Kumar, R., Acharya, S., Esakky, R., Chakraborty, M., Pinnamaneni, R., & Palicherla, S. R. (2021). Pyramiding Ty-1/Ty-3, Ty-2, ty-5 and ty-6 genes into tomato hybrid to develop resistance against tomato leaf curl viruses and recurrent parent genome recovery by ddRAD sequencing method. Journal of Plant Biochemistry and Biotechnology, 30, 462–476.

    CAS  Google Scholar 

  • Prasanna, H. C., Sinha, D. P., Rai, G. K., Krishna, R., Kashyap, S. P., Singh, N. K., Singh, M., & Malathi, V. G. (2015). Pyramiding Ty-2 and Ty-3 genes for resistance to monopartitie and bipartite tomato leaf curl viruses in India. Plant Pathology, 64, 256–264.

    CAS  Google Scholar 

  • Pule, B. B., Meitz, J. C., Thompson, A. H., Linde, C. C., Fry, W. E., Langenhoven, S. D., Meyers, K. L., Kandolo, D. S., van Rij, N. C., & McLeod, A. (2013). Phytophthora infestans populations in central, eastern and southern African countries consist of two major clonal lineages. Plant Pathology., 62, 154–165.

    CAS  Google Scholar 

  • Reddy, R. C., Colvin, J., Muniyappa, V., & Seal, S. (2005). Diversity and distribution of begomoviruses infecting tomato in India. Archives of Virology, 150, 845–867.

    CAS  PubMed  Google Scholar 

  • Robbins, M. D., Masud, M. A. T., Panthee, D. R., Gardner, R. G., Francis, D. M., & Stevens, M. R. (2010). Marker-assisted selection for coupling phase resistance to Tomato spotted wilt virus and Phytophthtora infestans (late blight) in tomato. Horticultural Science, 45, 1424–1428.

    Google Scholar 

  • SAS V 9.3, 2012. Statistical Analysis System, V 9.3, SAS Institute Inc., Carry NC.

  • Shafiq, M., Iqbal, Z., Ali, I., Abbas, Q., Mansoor, S., Briddon, R. W., & Amin, I. (2017). Real-time quantitative PCR assay for the quantification of virus and satellites causing leaf curl disease in cotton in Pakistan. Journal of Virological Methods, 248, 54–60.

    CAS  PubMed  Google Scholar 

  • Shen, X., Yan, Z., Wang, X., Wang, Y., Arens, M., Du, Y., Visser, R. G., Kormelink, R., Bai, Y., & Wolters, A. M. A. (2020). The NLR protein encoded by the resistance gene Ty-2 is triggered by the replication-associated protein Rep/C1 of tomato yellow leaf curl virus. Frontiers in Plant Science, 11, 545306.

    PubMed  PubMed Central  Google Scholar 

  • Singh, B. P., Roy, S., & Bhattacharyya, S. K. (1994). Occurrence of the A2 mating type of Phytophthora infestans in India. Potato Research, 37(3), 227–231.

    Google Scholar 

  • Tabein, S., Behjatnia, S. A. A., Laviano, L., Pecchioni, N., Accotto, G. P., Noris, E., & Miozzi, L. (2017). Pyramiding Ty-1/Ty-3 and Ty-2 in tomato hybrids dramatically inhibits symptom expression and accumulation of tomato yellow leaf curl disease inducing viruses. Archives of Phytopathology and Plant Protection, 50, 213–227.

    CAS  Google Scholar 

  • Van den Bosch, F., Akudibilah, G., Seal, S., & Jeger, M. (2006). Host resistance and the evolutionary response of plant viruses. Journal of Applied Ecology, 43, 506–516.

    Google Scholar 

  • Verlaan, M. G., Hutton, S. F., Ibrahem, R. M., Kormelink, R., Visser, R. G., Scott, J. W., Edwards, J. D., & Bai, Y. (2013). The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA–dependent RNA polymerases. PLoS genetics, 9(3), e1003399.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi, H., Ohnishi, J., Saito, A., Ohyama, A., Nunome, T., Miyatake, K., & Fukuoka, H. (2018). An NB-LRR gene, TYNBS1, is responsible for resistance mediated by the Ty-2 Begomovirus resistance locus of tomato. Theoretical and Applied Genetics, 131, 1345–1362.

    CAS  PubMed  Google Scholar 

  • Yang, W. C., & Francis, D. M. (2005). Marker-assisted selection for combining resistance to bacterial spot and bacterial speck in tomato. Journal of the American Society for Horticultural Science, 130, 716–721.

    CAS  Google Scholar 

  • Ye, G., & Smith, K. F. (2008). Marker-assisted gene pyramiding for inbred line development: Basic principles and practical guidelines. International Journal of Plant Breeding, 2(1), 1–10.

    Google Scholar 

  • Zamir, D., Ekstein-Michelson, I., Zakay, Y., Navot, N., Zeidan, M., Sarfatti, M., Eshed, Y., Harel, E., Pleban, T., Van-Oss, H., & Kedar, N. (1994). Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theoretical and Applied Genetics, 88(2), 141–146.

    CAS  PubMed  Google Scholar 

  • Zhang, C., Liu, L., Zheng, Z., Sun, Y., Zhou, L., Yang, Y., Cheng, F., Zhang, Z., Wang, X., Huang, S., & Xie, B. (2013). Fine mapping of the Ph-3 gene conferring resistance to late blight (Phytophthora infestans) in tomato. Theoretical and applied genetics, 126, 2643–2653.

    CAS  PubMed  Google Scholar 

  • Zhang, C., Liu, L., Wang, X., Vossen, J., Li, G., Li, T., Zheng, Z., Gao, J., Guo, Y., Visser, R. G., & Li, J. (2014). The Ph-3 gene from Solanum pimpinellifolium encodes CC-NBS-LRR protein conferring resistance to Phytophthora infestans. Theoretical and applied genetics, 127, 1353–1364.

    CAS  PubMed  Google Scholar 

  • Zhi, X., Shu, J., Zheng, Z., Li, T., Sun, X., Bai, J., Cui, Y., Wang, X., Huang, Z., Guo, Y., & Du, Y. (2021). Fine mapping of the Ph-2 gene conferring resistance to late blight (Phytophthora infestans) in tomato. Plant Disease, 105(4), 851–858.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank the ICAR- Indian Agricultural Research Institute, New Delhi, India and ICAR- Indian Institute of Horticultural Research, Bengaluru, India for extending all the facilities to conduct the study. ATS and KVR acknowledge financial support from Department of Biotechnology, Government of India, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Kaushal.

Ethics declarations

Conflicts of interest

The authors have no competing interests to declare that are relevant to the contents of this article.

Supplementary information

ESM 1

(DOCX 103 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushal, A., Sadashiva, A.T., Ravishankar, K.V. et al. Marker-assisted pyramiding of Ty-2, Ty-3, Ph-2, and Ph-3 genes for combined resistance to tomato leaf curl and late blight diseases in tomato (Solanum lycopersicum L.). Eur J Plant Pathol 168, 557–570 (2024). https://doi.org/10.1007/s10658-023-02784-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-023-02784-y

Keywords

Navigation