Skip to main content
Log in

A viability qPCR protocol to assess the efficacy of a heat treatment to sanitize carrot seeds from Candidatus Liberibacter solanacearum

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Seeds may harbour plant pathogens and, therefore, may be regarded as a possible pathway for their dissemination along trade routes worldwide. Heat treatment appears to be a proper seed sanitation method to comply with the requirement of phytosanitary measures. Carrot seeds have been supposed as a pathway for the dissemination of Candidatus Liberibacter solanacearum, although vertical pathogen transmission is still under debate: nonetheless, such seeds may be conveniently heat treated as a sanitation method. We used a dry thermal treatment (50 ± 1 °C for 72 h) to sanitize seeds from Ca. Liberibacter solanacearum and, since this bacterium is not cultivable, we additionally implemented and evaluated a viability qPCR protocol able to detect only viable cells, therefore confirming seed sanitation. The population of the pathogen was estimated through a plasmid calibration curve. The infection of Ca. Liberibacter solanacearum was quantified in two positive samples at approx. 5 × 106 cells gram −1 of seed. Seed sample tested with monoazides (EMA and PMA) qPCR clearly indicated that seed-associated bacteria lost their viability during the heat treatment, thus confirming seed sanitation. Finally, such heat treatment did not affect seed viability and seed quality: conversely, a remarkable reduction of seed saprophytes was observed, together with a better vigour germination performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal, V. K., & Sinclair, J. B. (1997). Principles of seed pathology, 2nd edition. CRC Press, pages 562. https://doi.org/10.1201/9781482275650.

  • Applied Biosystems. (2004). Amplification Efficiency of TaqMan®gene Expression Assays. <http://appliedbiosystems.com/cms/groups/mcb_marketing/documents/generaldocuments/cms_040377.pdf>.

  • Atanasoff, D., & Johnson, A. G. (1920). Treatment of cereal seeds by dry heat. Journal of Agricultural Research [U.S.], 18 (7), 379–390.

  • Baker, K. F. (1962). Thermotherapy of planting material. Phytopathology, 52, 1244–1255.

    Google Scholar 

  • Bashan, Y. (1997). Alternative strategies for controlling plant diseases caused by Pseudomonas syringae. In: Rudolph K., Burr T.J., Mansfield J.W., Stead D., Vivian A., von Kietzell J. (eds) Pseudomonas syringae pathovars and related pathogens. Developments in Plant Pathology, vol 9. Springer. https://doi.org/10.1007/978-94-011-5472-7_105.

  • Ben Othmen, S., Morán, F. E., & Navarro, I. (2018). ‘Candidatus Liberibacter solanacearum’ haplotypes D and E in carrot plants and seeds in Tunisia. Journal of Plant Pathology, 100, 197–207. https://doi.org/10.1007/s42161-018-0045-7

    Article  Google Scholar 

  • Bertolini, E., Teresani, G. R., Loiseau, M., Tanaka, F. A. O., Barbé, S., Martínez, C., Gentit, P., López, M. M., & Cambra, M. (2015). Transmission of ‘Candidatus Liberibacter solanacearum’ in carrot seeds. Plant Pathology, 64, 276–285.

    Article  CAS  Google Scholar 

  • Basky, Z., & Aponyi, I. (1988). Tomato seed treatment possibilities against seed borne diseases. Acta Horticulturae. 220, 397–400. https://doi.org/10.17660/ActaHortic.1988.220.55.

  • Bolha, L., Dusanic, D., Narat, M., & Oven, I. (2012). Comparison of methods for relative quantification of gene expression using Real-time PCR. Acta Agriculturae Slovenica, 100, 97–106.

    Article  CAS  Google Scholar 

  • Brauge, T., Midelet-Bourdin, G., & Soumet, C. (2019). Viability detection of foodborne bacterial pathogens in food environment by PMA-qPCR and by microscopic observation. In Foodborne bacterial pathogens (pp. 117–128). Humana.

  • Brodal, G., & Asdal, Å. (2021). Longevity of plant pathogens in dry agricultural seeds during 30 years of storage. Microorganisms, 9(10), 2175. https://doi.org/10.3390/microorganisms9102175

    Article  PubMed  PubMed Central  Google Scholar 

  • Cattani, F., Barth, V. C., Jr., Nasário, J. S., Ferreira, C. A., & Oliveira, S. D. (2016). Detection and quantification of viable Bacillus cereus group species in milk by propidium monoazide quantitative Real-time PCR. Journal of Dairy Science, 99(4), 2617–2624.

    Article  CAS  PubMed  Google Scholar 

  • Celia Chalam, V., Deepeka, D. D., Abhishek, G. J., & Mauria A. K. (2020). Major seed-borne diseases of agricultural crops: International trade of agricultural products and role of quarantine. Pages 25–64 in: Kumar R., Gupta A. (eds) Seed-borne Diseases of Agricultural Crops: Detection, Diagnosis & Management. Springer. https://doi.org/10.1007/978-981-32-9046-4_2.

  • Chandel, A., Mann, R., Kaur, J., Norton, S., Edwards, J., Spangenberg, G. & Sawbridge, T. (2021). Implications of Seed Vault Storage Strategies for Conservation of Seed Bacterial Microbiomes. Frontiers in Microbiology, (12). https://doi.org/10.3389/fmicb.2021.784796.

  • Deshmukh, R., Bhand, S., & Roy, U. (2020). A novel method for rapid and sensitive detection of viable Escherichia coli cells using UV-induced PMA-coupled quantitative PCR. Brazilian Journal of Microbiology, 51(2), 773–778.

    Article  CAS  PubMed  Google Scholar 

  • Doyle, J. (1991). DNA Protocols for Plants. In: Hewitt G. M., Johnston A. W. B., Young J. P. W. (eds) Molecular Techniques in Taxonomy. NATO ASI Series (Series H: Cell Biology), vol 57. Springer. https://doi.org/10.1007/978-3-642-83962-7_18.

  • Dusserre, E., Ginevra, C., Hallier-Soulier, S., Vandenesch, F., Festoc, G., Etienne, J., Jarraud, S., & Molmeret, M. (2008). A PCR-based method for monitoring Legionella pneumophila in water samples detects viable but non cultivable legionellae that can recover their cultivability. Applied and Environmental Microbiology, 74(15), 4817–4824. https://doi.org/10.1128/AEM.02899-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta, B., Block, C. C., Stevenson, K. L., Hunt Sanders, F., Walcott, R. R., & Gitaitis, R. D. (2013). Distribution of phytopathogenic bacteria in infested seeds. Seed Science and Technology, 41, 383–397.

    Article  Google Scholar 

  • EPPO, European and Mediterranean Plant Protection. (2013). Data sheets on pests recommended for regulation. ‘Candidatus Liberibacter solanacearum’. Bulletin OEPP/EPPO Bulletin 43, 197– 201. https://doi.org/10.1111/epp.12043

  • EPPO, European and Mediterranean Plant Protection. (2020). PM 7/143 (1) ‘Candidatus Liberibacter solanacearum’. Bulletin OEPP/EPPO Bulletin, 50(1), 49–68. https://doi.org/10.1111/epp.12611

  • FAO. (2021). International Plant Protection Convention (IPPC), ISPM 38: International Movement of Seeds (p. 22). Available at: https://www.ippc.int/en/publications/84340/. Accessed 21 Jul 2021.

  • Fittipaldi, M., Nocker, A., & Codony, F. (2012). Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification. Journal of Microbiological Methods, 91(2), 276–289. https://doi.org/10.1016/j.mimet.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  • Fourest, E., Rehms, L. D., Sands, D. C., & Bjarko, M. (1990). Eradication of Xanthomonas campestris pv. translucens from barley seed with dry heat treatments. Plant Disease, 74, 816–818.

    Article  Google Scholar 

  • Fujikawa, T., Taguchi, M., Kido, K., Kusano, S., Enya, J., Mihara, T., Kaku, H., & Sato, M. (2020a). Evaluation of an RNA-based PCR assay to detect viable Candidatus Liberibacter solanacearum (Lso) in Lso-contaminated carrot seeds using different disinfection methods. Journal of Plant Pathology, 102, 205–211. https://doi.org/10.1007/s42161-019-00405-4

    Article  Google Scholar 

  • Fujikawa, T., Yamamura, K., Osaki, K., Onozuka, N., Taguchi, M., Sasaki, A., & Sato, M. (2020b). Seed transmission of ‘Candidatus Liberibacter solanacearum’ is unlikely in carrot. Journal of General Plant Pathology, 86, 266–273. https://doi.org/10.1007/s10327-020-00927-1

    Article  Google Scholar 

  • Giovanardi, D., Biondi, E., Ignjatov, M., Gašić. K., Ferrari, M., Perez, S., Jevtić, R. & Stefani, E. (2015). Seed transmission of Xanthomonas vesicatoria and Clavibacter michiganensis subsp. michiganensis in tomato and Xanthomonas euvesicatoria in pepper and implementation of seed disinfection methods. In: D. Marčić, M. Glavendekić, P. Nicot (Eds.) Proceedings of the 7th Congress on Plant Protection. Plant Protection Society of Serbia, IOBC-EPRS, IOBC-WPRS, 2015, 53 – 58.

  • Gobert, G., Cotillard, A., Fourmestraux, C., Pruvost, L., Miguet, J., & Boyer, M. (2018). Droplet digital PCR improves absolute quantification of viable lactic acid bacteria in faecal samples. Journal of Microbiological Methods, 148, 64–73.

    Article  CAS  PubMed  Google Scholar 

  • Hajri, A., Loiseau, M., Cousseau-Suhard, P., Renaudin, I., & Gentit, P. (2017). Genetic characterization of ‘Candidatus Liberibacter solanacearum’ haplotypes associated with Apiaceous crops in France. Plant Disease, 101, 1383–1390.

    Article  CAS  PubMed  Google Scholar 

  • Han, S., Jiang, N., Lv, Q., Kan, Y., Hao, J., Li, J., & Luo, L. (2018). Detection of Clavibacter michiganensis subsp. michiganensis in viable but nonculturable state from tomato seed using improved qPCR. PLoS ONE 13(5), e0196525. https://doi.org/10.1371/journal.pone.0196525.

  • Hu, H., Davis, M. J., & Brlansky, R. H. (2013). Quantification of live ‘Candidatus Liberibacter asiaticus’ populations using Real-time PCR and propidium monoazide. Plant Disease, 97, 1158–1167.

    Article  CAS  PubMed  Google Scholar 

  • ISF. (2020). Detection of Candidatus Liberibacter solanacearum on carrot seeds. Available at: https://worldseed.org/wp-content/uploads/2020/06/Carrot_Lso_June_2020.pdf. Accessed on Version 2.1, June 2020.

  • ISTA. (2021). International Rules for Seed Testing 2021. International Seed Testing Association, Bassersdorf, Switzerland. Available at: https://www.seedtest.org/en/publications/international-rules-seed-testing-1168.html.

  • Jagoueix, S., Bove, J. M., & Garnier, M. (1996). PCR detection of two ‘Candidatus Liberibacter species’ associated with greening disease of citrus. Molecular and Cellular Probes, 10, 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Jarujit, J., Paradornuwat, A. & Hilf, M. E. (2016). Development of Ethidium Monoazide (EMA) Real-time polymerase chain reaction (EMA-qPCR) technique for detection and assessment of live 'Candidatus Liberibacter asiaticus' cells in Citrus spp. tissues. Thai Journal of Agricultural Science, 49 (4), 105–116.

  • Josephson, K. L., Gerba, C. P., & Pepper, I. L. (1993). Polymerase chain reaction detection of nonviable bacterial pathogens. Applied and Environmental Microbiology, 59(10), 3513–3515. https://doi.org/10.1128/aem.59.10.3513-3515.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein, J. D. (2004). Postharvest physiology / Seed storage. In: Thomas B. (Ed.) Encyclopedia of Plant Sciences. Academic Press (Elsevier Group Ltd.), pages 962–865.

  • Kobayashi, H., Oethinger, M., Tuohy, M. J., Hall, G. S., & Bauer, T. W. (2009). Improving clinical significance of PCR: Use of propidium monoazide to distinguish viable from dead Staphylococcus aureus and Staphylococcus epidermidis. Journal of Orthopaedic Research, 27, 1243–1247.

    Article  CAS  PubMed  Google Scholar 

  • Kralik, P., & Ricchi, M. (2017). A Basic Guide to Real Time PCR in Microbial Diagnostics: Definitions, Parameters, and Everything. Frontiers Microbiology, 2, 8–108. https://doi.org/10.3389/fmicb.2017.00108

    Article  Google Scholar 

  • Kubota, M., Hagiwara, N., & Shirakawa, T. (2012). Disinfection of seeds of cucurbit crops infested with Acidovorax citrulli with dry heat treatment. Journal of Phytopathology, 160(7–8), 364–368. https://doi.org/10.1111/j.1439-0434.2012.01913.x

    Article  Google Scholar 

  • Li, W., Abad, J. A., French-Monar, R. D., Rascoe, J., Wen, A., Gudmestad, N. C., Secor, G. A., Lee, I. M., Duan, Y., & Levy, L. (2009). Multiplex Real-time PCR for detection, identification and quantification of ’Candidatus Liberibacter solanacearum’ in potato plants with zebra chip. Journal of Microbiological Methods, 78(1), 59–65. https://doi.org/10.1016/j.mimet.2009.04.009

    Article  CAS  PubMed  Google Scholar 

  • Lin, H., Lou, B., Glynn, J. M., Doddapaneni, H., Civerolo, E. L., Chen, C., Duan, Y., Zhou, L., & Vahling, C. M. (2011). The complete genome sequence of 'Candidatus Liberibacter solanacearum', the bacterium associated with potato zebra chip disease. PloS ONE, 6 (4), e19135. https://doi.org/10.1371/journal.pone.0019135.

  • Løvdal, T., Hovda, M. B., Björkblom, B., & Møller, S. G. (2011). Propidium monoazide combined with Real-time quantitative PCR underestimates heat-killed Listeria innocua. Journal of Microbiological Methods, 85, 164–169.

    Article  PubMed  Google Scholar 

  • Loiseau, M., Garnier, S., Boirin, V., Merieau, M., Leguay, A., Renaudin, I., Renvoisé, J. P., & Gentit, P. (2014). First report of ‘Candidatus Liberibacter solanacearum’ in carrot in France. Plant Disease, 98 (6), 839.https://doi.org/10.1094/PDIS-08-13-0900-PDN.

  • Loiseau, M., Renaudin, I., Cousseau-Suhard, P., Lucas, P. M., Forveille, A., & Gentit, P. (2017). Lack of evidence of vertical transmission of ’Candidatus Liberibacter solanacearum’ by carrot seeds suggests that seed is not a major transmission pathway. Plant Disease, 101(12), 2104–2109. https://doi.org/10.1094/PDIS-04-17-0531-RE

    Article  CAS  PubMed  Google Scholar 

  • Lu, Y., Li, Z., Xie, B., Song, Y., Ye, X., & Liu, P. (2019). hsa-miR-20a-5p attenuates allergic inflammation in HMC-1 cells by targeting HDAC4. Molecular Immunology, 107, 84–90.

    Article  CAS  PubMed  Google Scholar 

  • Mawassi, M., Dror, O., Bar-Joseph, M., Piasezky, A., Sjölund, J. M., Levitzky, N., Shoshana, N., Meslenin, L., Haviv, S., Porat, C., Katsir, L., Kontsedalov, S., Ghanim, M., Zelinger-Reichert, E., Arnsdorf, Y. M., Gera, A., & Bahar, O. (2018). Candidatus Liberibacter solanacearum is tightly associated with carrot yellows symptoms in Israel and transmitted by the prevalent psyllid vector Bactericera trigonica. Phytopathology, 108, 1056–1066.

    Article  CAS  PubMed  Google Scholar 

  • Monger, C. A., & Jeffries, C. I. (2018). A survey of Candidatus Liberibacter solanacearum in historical seed from collections of carrot and related Apiaceae species. European Journal of Plant Pathology, 150(3), 803–815.

    Article  Google Scholar 

  • Nelson, E. B. (2018). The seed microbiome: Origins, interactions, and impacts. Plant and Soil, 422, 7–34. https://doi.org/10.1007/s11104-017-3289-7

    Article  CAS  Google Scholar 

  • Nega, E., Ulrich, R., Werner, S., & Jahn, M. (2003). Hot water treatment of vegetable seed – an alternative seed treatment method to control seed borne pathogens in organic farming. Journal of Plant Diseases and Protection, 110(3), 220–234.

    Google Scholar 

  • Nissinen, A. I., Haapalainen, M., Ojanen, H., Pirhonen, M., & Jauhiainen, L. (2021). Spreading of Trioza apicalis and development of ‘Candidatus Liberibacter solanacearum’ infection on carrot in the field conditions. Annals of Applied Biology, 178, 39–50.

    Article  CAS  Google Scholar 

  • Nocker, A., Cheung, C. Y., & Camper, A. K. (2006). Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. Journal of Microbiological Methods, 67, 310–320.

    Article  CAS  PubMed  Google Scholar 

  • Nogva, H. K., Drømtorp, S. M., Nissen, H., & Rudi, K. (2003). Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 50-nuclease PCR. BioTechniques, 34, 804–813. https://doi.org/10.2144/03344rr02

    Article  CAS  PubMed  Google Scholar 

  • OECD. (2012). A synthesis of international regulatory aspects that affect seed trade. In: OECD Seed Schemes, pp. 17. Available at: https://www.oecd.org/agriculture/seeds/documents/international-regulatory-aspects-seed-trade.pdf, accessed on January 6th, 2022.

  • Oishi, M., Hoshino, S., Fujiwara, Y., Ushiku, S., Kobayashi, Y., & Namba, I. (2017). A comparison of protocols to detect Candidatus Liberibacter solanacearum from carrot seeds, research on the effectiveness of propidium monoazide treatment and evaluation of seed transmission in carrot seeds. Research Bulletin of the Plant Protection Service, Japan, (53), 111–117 (in Japanese, English Abstract).

  • Oliver, J. D. (2010). Recent findings on the viable but non-culturable state in pathogenic bacteria. FEMS Microbiology Reviews, 34(4), 415–425. https://doi.org/10.1111/j.1574-6976.2009.00200.x

    Article  CAS  PubMed  Google Scholar 

  • Pereira, R. S., Nascimento, W. M., & Vieira, J. V. (2008). Carrot seed germination and vigor in response to temperature and umbel orders. Scientia Agricola, 65(2), 145–150.

    Article  Google Scholar 

  • Seinige, D., Krischek, C., Klein, G., & Kehrenberg, C. (2014). Comparative analysis and limitations of ethidium monoazide and propidium monoazide treatments for the differentiation of viable and nonviable campylobacter cells. Applied and Environmental Microbiology, 80(7), 2186–2192. https://doi.org/10.1128/AEM.03962-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, S., Singh, H., & Bharat, N.K. (2020). Hot water seed treatment: A review. In: Capsicum, Aman Dekebo (Ed.), IntechOpen. https://doi.org/10.5772/intechopen.91314. Available from: https://www.intechopen.com/chapters/71304, accessed on January 23rd, 2022.

  • Temple, T. N., du Toit, L. J., Derie, M. L., & Johnson, K. B. (2013). Quantitative molecular detection of Xanthomonas hortorum pv. carotae in carrot seed before and after hot-water treatment. Plant Disease, 97(12):1585–1592. https://doi.org/10.1094/PDIS-03-13-0262-RE.

  • Teresani, G. R., Bertolini, E., Alfaro-Fernández, A., Martínez, C., Tanaka, F. A., Kitajima, E. W., Roselló, M., Sanjuán, S., Ferrándiz, J. C., López, M. M., Cambra, M., & Font, M. I. (2014). Association of ’Candidatus Liberibacter solanacearum’ with a vegetative disorder of celery in Spain and development of a Real-time PCR method for its detection. Phytopathology, 104(8), 804–811. https://doi.org/10.1094/PHYTO-07-13-0182-R

    Article  CAS  PubMed  Google Scholar 

  • Tian, Q., Feng, J., & Hu, J. (2016). Selective detection of viable seed-borne Acidovorax citrulli by Real-time PCR with propidium monoazide. Scientific Reports, 6, 35457. https://doi.org/10.1038/srep35457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi, P., Sagaram, U. S., Kim, J. S., Brlansky, R. H., Rogers, M., Stelinski, L. L., Oswalt, C., Kim, J. S., & Wang, N. (2009). Quantification of viable Candidatus Liberibacter asiaticus in hosts using quantitative PCR with the aid of ethidium monoazide (EMA). European Journal of Plant Pathology, 124, 553–563.

    Article  CAS  Google Scholar 

  • Umesha, S. (2020). Diversity of seed-borne bacterial phytopathogens. In: Kumar R., Gupta A. (Eds) Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management. Springer. https://doi.org/10.1007/978-981-32-9046-4_13.

  • Zhao, M., & Walcott, R.R. (2018). Acidovorax citrulli: History, epidemiology, and management of bacterial fruit blotch of cucurbits. In: Plant-Pathogenic Acidovorax Species. The American Phytopathological Society (APS). Pages 39–57. https://doi.org/10.1094/9780890546062.003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Giovanardi.

Ethics declarations

Conflicts of interests

The authors declare that they do not have any actual or potential conflict of interest.

Ethical approval

Our manuscript is original research and itis not submitted to full or in parts to other journal for publication.

Research involved in human and animal rights

The research did not involve any studies with human participants or animal as experimental model.

Informed consent

All authors have reviewed the manuscript and approved the final version of manuscript before submission.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othmen, S.B., Nibali, G.C., Cassanelli, S. et al. A viability qPCR protocol to assess the efficacy of a heat treatment to sanitize carrot seeds from Candidatus Liberibacter solanacearum. Eur J Plant Pathol 166, 77–90 (2023). https://doi.org/10.1007/s10658-023-02646-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-023-02646-7

Keywords

Navigation