Skip to main content
Log in

Bacillus subtilis ALBA01 alleviates onion pink root by antagonizing the pathogen Setophoma terrestris and allowing physiological status maintenance

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The soil-borne pathogen Setophoma terrestris is the causal agent of pink root of onion, one of the most challenging diseases in onion production. Conventional approaches for managing the disease like solarization, soil fumigation and crop rotation have not been proven effective enough. In this work, we evaluated the biocontrol capacity of Bacillus subtilis ALBA01 (BsA01) against S. terrestris, in a highly susceptible onion cultivar, both under greenhouse and field conditions. Disease incidence and severity were evaluated together with growth, photosynthesis among other physiological variables, and yield parameters. When compared with plants infected with the pathogen, those plants co-inoculated with BsA01 showed significantly less damage and levels of biocontrol above 50%. With regard to physiological parameters, plants challenged with S. terrestris and inoculated with BsA01 performed as well as the control non-infected plants revealing a growth promotion effect of BsA01 on onion plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ajigboye, O. O., Bousquet, L., Murchie, E. H., & Ray, R. V. (2016). Chlorophyll fluorescence parameters allow the rapid detection and differentiation of plant responses in three different wheat pathosystems. Functional Plant Biology, 43(4), 356–369.

    Article  CAS  Google Scholar 

  • Albarracín Orio, A. G., Brücher, E., & Ducasse, D. A. (2016a). A strain of Bacillus subtilis subsp. subtilis shows a specific antagonistic activity against the soil-borne pathogen of onion Setophoma terrestris. European Journal of Plant Pathology, 144(1), 217–223. https://doi.org/10.1007/s10658-015-0762-0.

    Article  CAS  Google Scholar 

  • Albarracín Orio, A. G., Tobares, R. A., Ducasse, D. A., & Smania, A. M. (2016b). Draft Genome Sequence of Bacillus subtilis ALBA01, a strain with antagonistic activity against the soilborne fungal pathogen of onion Setophoma terrestris. Genome Announcements, 4(3), e00455–e00416. https://doi.org/10.1128/genomeA.00455-16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker, N. R. (2008). Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annual Review of Plant Biology, 59(1), 89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759.

    Article  CAS  PubMed  Google Scholar 

  • Bauer, H., Ache, P., Lautner, S., Fromm, J., Hartung, W., Al-Rasheid, K. A. S., et al. (2013). The Stomatal Response to Reduced Relative Humidity Requires Guard Cell-Autonomous ABA Synthesis. Current Biology, 23(1), 53–57. https://doi.org/10.1016/j.cub.2012.11.022.

    Article  CAS  PubMed  Google Scholar 

  • Bauriegel, E., & Herppich, B. W. (2014). Hyperspectral and Chlorophyll Fluorescence Imaging for Early Detection of Plant Diseases, with Special Reference to Fusarium spec. Infections on Wheat. Agriculture, 4(1), https://doi.org/10.3390/agriculture4010032.

  • Berger, S., Benediktyová, Z., Matouš, K., Bonfig, K., Mueller, M. J., Nedbal, L., et al. (2006). Visualization of dynamics of plant–pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. Journal of Experimental Botany, 58(4), 797–806. https://doi.org/10.1093/jxb/erl208.

    Article  CAS  PubMed  Google Scholar 

  • Berger, S., Papadopoulos, M., Schreiber, U., Kaiser, W., & Roitsch, T. (2004). Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum, 122(4), 419–428. https://doi.org/10.1111/j.1399-3054.2004.00433.x.

    Article  CAS  Google Scholar 

  • Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4), 1327–1350. https://doi.org/10.1007/s11274-011-0979-9.

    Article  CAS  PubMed  Google Scholar 

  • Bisen, K., Keswani, C., Mishra, S., Saxena, A., Rakshit, A., & Singh, H. B. (2015). Unrealized Potential of Seed Biopriming for Versatile Agriculture. In A. Rakshit, H. B. Singh & A. Sen (Eds.), Nutrient Use Efficiency: from Basics to Advances (pp. 193–206). New Delhi: Springer India.

    Chapter  Google Scholar 

  • Bouizgarne, B. (2013). Bacteria for Plant Growth Promotion and Disease Management. In D. K. Maheshwari (Ed.), Bacteria in Agrobiology: Disease Management (pp. 15–47). Berlin: Springer Berlin Heidelberg.

    Chapter  Google Scholar 

  • Cai, X.-C., Liu, C.-H., Wang, B.-T., & Xue, Y.-R. (2017). Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease. Microbiological Research, 196, 89–94. https://doi.org/10.1016/j.micres.2016.12.007.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, C. L., & Madden, L. V. (1990). Introduction to plant disease epidemiology. New York: John Wiley & Sons.

    Google Scholar 

  • Costa Pinto, L., Azevedo, J. L., Pereira, J., Carneiro, V., Maria, L., & Labate, C. A. (2000). Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phytologist, 147(3), 609–615. https://doi.org/10.1046/j.1469-8137.2000.00722.x.

    Article  Google Scholar 

  • Chan Jung, L., Jong Tae, L., Jin Seong, M., In Jong, H., Hee Dae, K., Woo Il, K., et al. (2007). Effects of Solar Heating for Control of Pink Root and Other Soil-borne Diseases of Onions. The Plant Pathology Journal, 23(4), 295–299.

  • de Gruyter, J., Woudenberg, J. H. C., Aveskamp, M. M., Verkley, G. J. M., Groenewald, J. Z., & Crous, P. W. (2010). Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia, 102(5), 1066–1081. https://doi.org/10.3852/09-240.

    Article  PubMed  Google Scholar 

  • Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2017). InfoStat. Universidad Nacional de Córdoba.

  • Franklin, L. A., Levavasseur, G., Osmond, C. B., Henley, W. J., & Ramus, J. (1992). Two components of onset and recovery during photoinhibition of Ulva rotundata. Planta, 186(3), 399–408. https://doi.org/10.1007/BF00195321.

    Article  CAS  PubMed  Google Scholar 

  • Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41(2), 109–117. https://doi.org/10.1139/m95-015.

    Article  CAS  Google Scholar 

  • Hassen, H. N. (1929). Etiology of the pink-root disease of Onions. Phytopathology, 19(8), 691–704.

    Google Scholar 

  • Jen Colcol, M., Elizabeth, S., & Michael, J. H. (2018). Genetic Analyses and Mapping of Pink-Root Resistance in Onion. Journal of the American Society for Horticultural Science J. Amer. Soc. Hort. Sci., 143(6), 503–507. https://doi.org/10.21273/JASHS04509-18.

    Article  Google Scholar 

  • Kakar, K. U., Nawaz, Z., Cui, Z., Almoneafy, A. A., Ullah, R., & Shu, Q. Y. (2018). Rhizosphere-associated Alcaligenes and Bacillus strains that induce resistance against blast and sheath blight diseases, enhance plant growth and improve mineral content in rice. Journal of Applied Microbiology, 124(3), 779–796. https://doi.org/10.1111/jam.13678.

    Article  CAS  PubMed  Google Scholar 

  • Khalid, A., Arshad, M., Shaharoona, B., & Mahmood, T. (2009). Plant Growth Promoting Rhizobacteria and Sustainable Agriculture. In M. S. Khan, A. Zaidi & J. Musarrat (Eds.), Microbial Strategies for Crop Improvement (pp. 133–160). Berlin: Springer Berlin Heidelberg.

    Chapter  Google Scholar 

  • Kloepper, J. W. (1978). Plant growth-promoting rhizobacteria on radishes. Proc. of the 4th Internet. Conf. on Plant Pathogenic Bacter, Station de Pathologie Vegetale et Phytobacteriologie, INRA, Angers, France, 1978, 2, 879–882.

  • Kloepper, J. W., Lifshitz, R., & Zablotowicz, R. M. (1989). Free-living bacterial inocula for enhancing crop productivity. Trends in Biotechnology, 7(2), 39–44. https://doi.org/10.1016/0167-7799(89)90057-7.

    Article  Google Scholar 

  • Kloepper, J. W., Ryu, C.-M., & Zhang, S. (2004). Induced Systemic Resistance and Promotion of Plant Growth by Bacillus spp. Phytopathology™, 94(11), 1259–1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259.

    Article  CAS  Google Scholar 

  • Lafi, J. G. (2011). Caracterización morfológica, fisiológica, patogénica y molecular de aislados argentinos de Phoma terrestris Hansen. Mendoza: Universidad Nacional de Cuyo.

    Google Scholar 

  • Lareen, A., Burton, F., & Schäfer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 90(6), 575–587. https://doi.org/10.1007/s11103-015-0417-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leal, N., & Lastra, R. (1984). Altered metabolism of tomato plants infected with tomato yellow mosaic virus. Physiological Plant Pathology, 24(1), 1–7. https://doi.org/10.1016/0048-4059(84)90067-5.

    Article  Google Scholar 

  • Linardelli, C., Lafi, J., Puglia, C., Tarquini, A., Soto, A., & Echevarría, S. (2008a). Comportamiento a campo de cuatro aislados de Phoma terrestris sobre dos cultivares de cebolla. Córdoba, Argentina: 1º Congreso Argentino de Fitopatología.

  • Linardelli, C., Tarquini, A., Lafi, J., & Echevarria, S. (2008b). Variabilidad patogénica de aislados de Phoma terrestris presentes en argentina. Córdoba: 1º Congreso Argentino de Fitopatología.

    Google Scholar 

  • Mahmood, A., Turgay, O. C., Farooq, M., & Hayat, R. (2016). Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiology Ecology, 92(8), https://doi.org/10.1093/femsec/fiw112.

  • McAdam, S. A. M., Manzi, M., Ross, J. J., Brodribb, T. J., & Gómez-Cadenas, A. (2016). Uprooting an abscisic acid paradigm: Shoots are the primary source. Plant Signaling & Behavior, 11(6), e1169359. https://doi.org/10.1080/15592324.2016.1169359.

    Article  CAS  Google Scholar 

  • Nasr Esfahani, M., & Ansari Pour, B. (2008). Differences in resistance in onion cultivars to pink root rot disease in Iran. Journal of General Plant Pathology, 74(1), 46–52. https://doi.org/10.1007/s10327-007-0070-4.

    Article  Google Scholar 

  • Netzer, D., Rabinowitch, H. D., & Weintal, C. H. (1985). Greenhouse technique to evaluate onion resistance to pink root. Euphytica, 34(2), 385–391. https://doi.org/10.1007/BF00022933.

    Article  Google Scholar 

  • Phookamsak, R., Liu, J.-K., Manamgoda, D. S., Chukeatirote, E., Mortimer, P. E., Mckenzie, E. H., et al. (2014). The sexual state of Setophoma. Phytotaxa, 176(1), 260–269.

    Article  Google Scholar 

  • Piccolo, R. J., & Galmarini, C. R. (1994). Caracteres epidemiológicos involucrados en la expresión de la resistencia a la raíz rosada de la cebolla Phoma terrestris Hansen. Revista de Investigaciones Agropecuarias (RIA), 25(3).

  • Porter, I. J., Merriman, P. R., & Keane, P. J. (1989). Integrated control of pink root Pyrenochaeta terrestris of onions by dazomet and soil solarization. Australian Journal of Agricultural Research, 40(4), 861–869.

    Article  Google Scholar 

  • Rinland, M. E., & Gómez, M. A. (2015). Isolation and characterization of onion degrading bacteria from onion waste produced in South Buenos Aires province, Argentina. World Journal of Microbiology and Biotechnology, 31(3), 487–497. https://doi.org/10.1007/s11274-015-1803-8.

    Article  CAS  PubMed  Google Scholar 

  • Roitsch, T., Balibrea, M. E., Hofmann, M., Proels, R., & Sinha, A. K. (2003). Extracellular invertase: key metabolic enzyme and PR protein. Journal of Experimental Botany, 54(382), 513–524. https://doi.org/10.1093/jxb/erg050.

    Article  CAS  PubMed  Google Scholar 

  • Sajitha, K. L., Dev, S. A., & Maria Florence, E. J. (2018). Biocontrol potential of Bacillus subtilis B1 against sapstain fungus in rubber wood. European Journal of Plant Pathology, 150(1), 237–244. https://doi.org/10.1007/s10658-017-1272-z.

    Article  Google Scholar 

  • Sawinski, K., Mersmann, S., Robatzek, S., & Böhmer, M. (2013). Guarding the Green: Pathways to Stomatal Immunity. Molecular Plant-Microbe Interactions®, 26(6), 626–632. https://doi.org/10.1094/MPMI-12-12-0288-CR.

    Article  CAS  Google Scholar 

  • Schwartz, H. F., & Mohan, S. K. (2016). Compendium of Onion and Garlic Diseases and Pests. In S. K. Mohan & F. S. Howard (Eds.), Compendium of Onion and Garlic Diseases and Pests, Second Edition (pp. i-v). Diseases: The American Phytopathological Society.

    Chapter  Google Scholar 

  • SENASA (2014). La cebolla, embajadora de la calidad hortícola argentina. Argentina.

  • Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced Systemic Resistance and Plant Responses to Fungal Biocontrol Agents. Annual Review of Phytopathology, 48(1), 21–43. https://doi.org/10.1146/annurev-phyto-073009-114450.

    Article  CAS  PubMed  Google Scholar 

  • Singh, A., Gupta, R., & Pandey, R. (2016). Rice Seed Priming with Picomolar Rutin Enhances Rhizospheric Bacillus subtilis CIM Colonization and Plant Growth. PLOS ONE, 11(1), e0146013. https://doi.org/10.1371/journal.pone.0146013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strasser, R. J., Tsimilli-Michael, M., & Srivastava, A. (2004). Analysis of the Chlorophyll a Fluorescence Transient. In G. C. Papageorgiou & Govindjee (Eds.), Chlorophyll a Fluorescence: A Signature of Photosynthesis (pp. 321–362). Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  • Timmusk, S., & Wagner, E. G. H. (1999). The Plant-Growth-Promoting Rhizobacterium Paenibacillus polymyxa Induces Changes in Arabidopsis thaliana Gene Expression: A Possible Connection Between Biotic and Abiotic Stress Responses. Molecular Plant-Microbe Interactions®, 12(11), 951–959. https://doi.org/10.1094/MPMI.1999.12.11.951.

    Article  CAS  Google Scholar 

  • Wang, X. Q., Zhao, D. L., Shen, L. L., Jing, C. L., & Zhang, C. S. (2018). Application and Mechanisms of Bacillus subtilis in Biological Control of Plant Disease. In V. S. Meena (Ed.), Role of Rhizospheric Microbes in Soil: Volume 1: Stress Management and Agricultural Sustainability (pp. 225–250). Singapore: Springer Singapore.

    Chapter  Google Scholar 

  • Xiang, N., Lawrence, K. S., Kloepper, J. W., Donald, P. A., & McInroy, J. A. (2017). Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean. PLOS ONE, 12(7), e0181201. https://doi.org/10.1371/journal.pone.0181201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamane, Y., Shikanai, T., Kashino, Y., Koike, H., & Satoh, K. (2000). Reduction of QA in the dark: Another cause of fluorescence Fo increases by high temperatures in higher plants. Photosynthesis Research, 63(1), 23–34. https://doi.org/10.1023/A:1006350706802.

    Article  CAS  PubMed  Google Scholar 

  • Zhori, A., Meco, M., Brandl, H., & Bachofen, R. (2015). In situ chlorophyll fluorescence kinetics as a tool to quantify effects on photosynthesis in Euphorbia cyparissias by a parasitic infection of the rust fungus Uromyces pisi. BMC Research Notes, 8(1), 698. https://doi.org/10.1186/s13104-015-1681-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by MINCyT-Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) (grant PICT 2016 − 1926 to D.A.D). The authors are grateful to Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrea Georgina Albarracín Orio or Daniel Adrián Ducasse.

Ethics declarations

This manuscript has not been submitted to any other journal for simultaneous consideration. All the co-authors consented to the manuscript submission and have contributed sufficiently to the scientific work and therefore share collective responsibility and accountability for it. This work does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Table 1

Formulae and glossary of terms used by the JIP-test in Fig. 3c. (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayago, P., Juncosa, F., Albarracín Orio, A.G. et al. Bacillus subtilis ALBA01 alleviates onion pink root by antagonizing the pathogen Setophoma terrestris and allowing physiological status maintenance. Eur J Plant Pathol 157, 509–519 (2020). https://doi.org/10.1007/s10658-020-02012-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-02012-x

Keywords

Navigation