Skip to main content
Log in

Enhanced resistance to citrus canker in transgenic sweet orange expressing the sarcotoxin IA gene

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Citrus canker, caused by the bacterial pathogen Xanthomonas citri subp. Citri (Xcc), is a serious disease reported in most citrus-producing areas around the world. Although different levels of field resistance to citrus canker have been reported in sweet oranges, they are usually not sufficient to provide adequate control of the disease. Ectopic over-expression of antibacterial genes is one of the potential strategies to increase plant resistance to bacterial diseases. Previous in vitro results showed that sarcotoxin IA, an antimicrobial peptide isolated from the flesh fly (Sarcophaga peregrina), can be efficient to control different plant pathogenic bacteria, including Xcc. Transgenic “Pera” sweet orange (Citrus sinensis [L.] Osbeck) plants constitutively expressing the sarcotoxin IA peptide fused to the PR1a signal peptide from Nicotiana tabacum for secretion in the intercellular space were obtained by Agrobacterium-mediated transformation using thin sections of mature explants. Citrus canker resistance evaluation in leaves of transgenic and non-transgenic plants was performed through inoculations with Xcc by infiltration and spraying. The Xcc population was up to 2 log unit lower in leaves of the transgenic plants compared to those of non-transgenic controls. Incidence of canker lesions was significantly higher in non-transformed controls (>10 lesions/cm2) than in the transgenic plants (<5 lesions/cm2) after injection infiltration or spraying with Xcc inoculum. Accumulation of sarcotoxin IA peptide in sweet orange tissue did not cause any deleterious effects on the growth and development of the transgenic plants, indicating this approach is suitable to provide resistance to citrus canker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Behlau, F., Belasque Jr., J., Bergamin, A. F., Graham, J. H., Leite Jr., R. P., & Gottwald, T. R. (2008). Coppersprays and windbreaks for control of citrus canker on young orange trees in southern Brazil. Crop Protection, 27(3–5), 807–813.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Bronson, C. H., & Gaskalla, R. (2007). Comprehensive report on citrus canker in Florida. Division of Plant Industry: Florida Department of Agriculture and Consumer Services.

    Google Scholar 

  • Cardoso, S. C., Barbosa-Mendes, J. M., Boscariol-Camargo, R. L., Christiano, R. S. C., Filho, A. B., Vieira, M. L. C., Mendes, B. M. J., & Mourão Filho, F. A. A. (2010). Transgenic sweet Orange (Citrus sinensis L. Osbeck) expressing the attacin a Gene for resistance to Xanthomonas citri subsp. citri. Plant Molecular Biology Reporter, 28(2), 185–192.

    Article  CAS  Google Scholar 

  • Carvalho, S. A., Nunes, W. M. C., Belasque Jr., J., Machado, M. A., Croce-Filho, J., Bock, C. H., & Abdo, Z. (2015). Comparison of resistance to asiatic citrus canker among different genotypes of citrus in a long-term canker-resistance field screening experiment in Brazil. Plant Disease, 99(2), 207–218.

    Article  Google Scholar 

  • Cervera, M., Juárez, J., Navarro, A., Pina, J. A., Durán-Vila, N., Navarro, L., & Peña, L. (1998). Genetic transformation and regeneration of mature tissues of woody fruit plants bypassing the juvenile stage. Transgenic Research, 7(1), 51–59.

    Article  CAS  Google Scholar 

  • Da Silva, A. C. R., Ferro, J. A., Reinach, F. C., Farah, C. S., Furlan, L. R., Quaggio, R. B., et al. (2002). Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 417, 459–463.

  • Delaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant minipreparation: Version II. Plant Molecular Biology Reporter, 4, 19–21.

    Article  Google Scholar 

  • Düring, K., Porsch, P., Fladung, M., Lõrz, H. (1993). Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora. The Plant Journal, 3, 587–598.

  • Dutt, M., Barthe, G., Irey, M., & Grosser, J. (2015). Transgenic citrus expressing an Arabidopsis NPR1 Gene exhibit enhanced resistance against Huanglongbing (HLB; citrus greening). PloS One, 10(9), e0137134. doi:10.1371/journal.pone.0137134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Furman, N., Kobayashi, K., Zanek, M. C., Calcagno, J., Garcia, M. L., & Mentaberry, A. (2013). Transgenic sweet orange plants expressing a dermaseptin coding sequence show reduced symptoms of citrus canker disease. Journal of Biotechnology, 167, 412–419.

    Article  CAS  PubMed  Google Scholar 

  • Gmitter Jr., F. G., Grosser, J. W., & Moore, G. A. (1992). Citrus. In F. A. Hammerschlag & R. E. Litz (Eds.), Biotechnology of perennial crops (pp. 335–369). CAB International: Cambridge.

    Google Scholar 

  • Gottwald, T. R., Graham, J. H., Civerolo, E. L., Barrett, H. C., & Hearn, C. J. (1993). Differential host range reaction of citrus and citrus relatives to citrus canker and citrus bacterial spot determined by leaf mesophyll susceptibility. Plant Disease, 77, 1004–1009.

    Article  Google Scholar 

  • Gottwald, T. R., Graham, J. H., & Schubert, T. S. (2002). Citrus canker: The pathogen and its impact. Plant Health Progress: Resource document http://plantmanagementnetwork.org/pub/php/review/citruscanker. Accessed 14 Oct 2016.

    Google Scholar 

  • Gottwald, T., Graham, J., Bock, C., Bonn, G., Civerolo, E., Irey, M., et al. (2009). The epidemiological significance of post-packinghouse survival of Xanthomonas citri ssp. citri for dissemination of Asiatic citrus canker via infected fruit. Crop Protection, 28, 508–524.

    Article  Google Scholar 

  • Graham, J. H., Gottwald, T. R., Cubero, J., & Achor, D. S. (2004). Xanthomonas axonopodis pv. citri: Factors affecting successful eradication of citrus canker. Molecular Plant Pathology, 5(1), 1–15.

    Article  PubMed  Google Scholar 

  • He, Y. R., Chen, S. C., Peng, A. H., Zou, X. P., Xu, L. Z., Lei, T. G., Liu, X. F., & Yao, L. X. (2011). Production and evaluation of transgenic sweet orange (Citrus sinensis L. Osbeck) containing bivalent antibacterial peptide genes (Shiva A and Cecropin B) via a novel Agrobacterium-mediated transformation of mature axillary buds. Scientia Horticulturae, 128, 99–107.

    Article  CAS  Google Scholar 

  • Hao, G., Stover, E., & Gupta, G. (2016). Overexpression of a modified plant thionin enhances disease resistance to citrus canker and Huanglongbing (HLB). Frontiers in Plant Science. doi:10.3389/fpls.2016.01078.

    Google Scholar 

  • Jaymes, J. M., Nagpala, P., Destéfano-Beltrán, L., Huang, J. H., Kim, J., Denny, T., & Cetiner, S. (1993). Expression of a cecropin B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solanacearum. Plant Science, 98, 43–53.

    Article  Google Scholar 

  • Kanai, A., & Natori, S. (1989). Cloning of gene cluster for sarcotoxin I, antibacterial proteins of Sarcophaga peregrina. FEBS Letters, 258(2), 199–202. doi:10.1016/0014-5793(89)81652-7.

  • Kobayashi, A. K., Bespalhok, J. C., Pereira, L. F. P., & Vieira, L. G. E. (2003). Plant regeneration of sweet orange (Citrus sinensis) from thin sections of mature stem segments. Plant Cell Tissue and Organ Culture, 74(1), 99–102.

    Article  CAS  Google Scholar 

  • Leite, Jr R.P., (1990). Cancro cítrico: prevenção e controle no Paraná. Instituto Agronômico do Paraná, Londrina, p. 51 (IAPAR. Circular, 61).

  • Lloyd, G.B, & McCown, B.H. (1980). Commercially feasible micropropagation of mountain laurel (Kalmia latifolia) by use of shoot tip culture. Proceedings, international plant propagators, 30: 421-437.

  • Mitsuhara, I., Matsuura, H., Ohshima, M., Kaku, H., Nakajima, Y., Murai, N., Natori, S., & Ohashi, Y. (2000). Induced expression of sarcotoxin IA enhanced host resistance against both resistance against both bacterial and fungal pathogens in transgenic tobacco. Molecular Plant Microbe Interaction, 13, 860–868.

    Article  CAS  Google Scholar 

  • Mitsuhara, I., Nakajima, Y., Natori, S., Mitsuoka, T., & Ohashi, Y. (2001). In vitro growth inhibition of human intestinal bacteria by sarcotoxin IA, an insect bactericidal peptide. Biotechnology Letters, 23, 569–573.

    Article  CAS  Google Scholar 

  • Mourgues, F., Brisset, M., & Chevreau, E. (1998). Strategies to improve plant resistance to bacterial diseases through genetic engineering. Trends in Biotechnology, 16, 203–210.

    Article  CAS  PubMed  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–479.

    Article  CAS  Google Scholar 

  • Nakajima, Y., Qu, X.M. & Natori, S. (1987). Interaction between liposomes and sarcotoxin IA, a potential antibacterial protein of Sarcophaga peregrina (flesh fly). Journal Biological Chemistry, 262, 1665–1669.

  • Navarro, L. (1992). Citrus shoot-tip grafting in vitro. In Y. P. S. Bajaj (Ed.), Biotechnology in agriculture and forestry (Vol. 18, pp. 328–338). New York: Spring Verlag, Berlin.

    Google Scholar 

  • Ohshima, M., Mitsuhara, I., Okamoto, M., Sawano, S., Nishiyama, K., Kaku, H., Natori, S., & Ohashi, Y. (1999). Enhanced resistance to bacterial diseases of transgenic tobacco plants overexpressing sarcotoxin IA, a bactericidal peptide of insect. Journal of Biochemistry, 125, 431–435.

    Article  CAS  PubMed  Google Scholar 

  • Okamoto, M., Mitsuhara, I., Ohshima, M., Natori, S., & Ohashi, Y. (1998). Enhanced expression of an antimicrobial peptide sarcotoxin IA by GUS fusion in transgenic tobacco plants. Plant Cell Physiology, 39, 57–63.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez, A., Cervera, M., Peris, J. E., & Peña, L. (2008). The same treatment for transgenic shoot regeneration elicits the opposite effect in mature explants from two closely related sweet orange (Citrus sinensis (L.) Osb.) genotypes. Plant Cell, Tissue and Organ Culture, 93(1), 97–106.

    Article  Google Scholar 

  • Sambrock, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Sharma, A., Sharma, R., Imamura, M., Yamakawa, M., & Machii, H. (2000). Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. FEBS Letters, 484, 7–11.

    Article  CAS  PubMed  Google Scholar 

  • Stall, R. E., Marcó, G. M., & Echenique, B. I. C. (1982). Importance of mesophyll in mature- leaf resistance to cancrosis of citrus. Phytopathology, 72, 1097–1100.

    Article  Google Scholar 

  • Viloria, Z., Drouillard, D. L., Graham, J. H., & Grosser, J. W. (2004). Screening triploid hybrids of ‘Lakeland’ limequat for resistance to citrus canker. Plant Disease, 88, 1056–1060.

    Article  Google Scholar 

  • Yamada, K., Nakajima, Y., & Natori, S. (1990). Production of recombinant sarcotoxin IA in Bombyx mori cells. Biochemistry Jornal, 272, 633–636.

    Article  CAS  Google Scholar 

  • Zhang, X., Francis, M. I., Dawson, W. O., Graham, J. H., Orbović, V., Triplett, E. W., & Mou, Z. (2010). Over-expression of the Arabidopsis NPR1 gene in citrus increases resistance to citrus canker. European Journal of Plant Pathology, 128, 91–100.

    Article  CAS  Google Scholar 

  • Wally, O., & Punja, Z. K. (2010). Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. GM Crops, 1, 199–206.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully thanks to Dr. Yuko Ohashi (Plant-Microbe Interactions Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan) for providing the pST10 plasmid. We also thank Suely A. Kudo and Luciana Meneguin for technical assistance. We thank Dr. Nelson A. Wulff, Dr. Leandro Peña and Dr. James Graham for critical reading of this manuscript. This work received financial support from CNPq, Fundação Araucária and Fundo de Defesa da Citricultura – FUNDECITRUS. L. G. E. Vieira and L. F. P. Pereira are CNPq research fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviani V. Marques.

Electronic supplementary material

Figure 1

(DOCX 205 kb)

Table 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, A.K., Vieira, L.G.E., Bespalhok Filho, J.C. et al. Enhanced resistance to citrus canker in transgenic sweet orange expressing the sarcotoxin IA gene. Eur J Plant Pathol 149, 865–873 (2017). https://doi.org/10.1007/s10658-017-1234-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1234-5

Keywords

Navigation