Skip to main content
Log in

Comparative susceptibility of peanut genetically engineered for sclerotinia blight resistance to non-target peanut pathogens

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Field trials were conducted from 2006 to 2008 at the Tidewater Agricultural Research and Extension Center (TAREC) in Suffolk, Virginia to determine whether Blight Blocker transgenic peanut lines showed possible increased or decreased susceptibility to common peanut pathogens. Disease susceptibility was evaluated for seven transgenic lines containing a barley oxalate oxidase gene and their corresponding parental cultivars (Perry, Wilson, NC 7). In addition to Sclerotinia blight, the peanut diseases evaluated included: i) early leaf spot caused by Cercospora arachidicola, ii) Cylindrocladium black rot caused by Cylindrocladium parasiticum, iii) southern stem rot caused by Sclerotium rolfsii, iv) tomato spotted wilt virus, and v) aflatoxin levels in seeds caused by Aspergillus flavus or A. parasiticus. Results demonstrated that the susceptibility of Blight Blocker transgenic lines to common peanut pathogens was similar to that of non-transgenic cultivars, while transgenic lines provided resistance to Sclerotinia blight caused by S. minor. Transgenic lines consistently provided high levels of resistance to S. minor in all three years, however, the barley oxalate oxidase had little or no effect on the disease susceptibility to other organisms on peanut. The results of this research should provide additional evidence needed to petition for deregulation of Blight Blocker peanut lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Backman, P. A., & Brenneman, T. B. (1997). Stem rot. In N. Kokalis-Burelle, D. M. Porter, R. Rodriguez-Kabana, D. H. Smith, & P. Subrahmanyam (Eds.), Compendium of peanut diseases (2nd ed., pp. 36–37). St. Paul: APS Press.

    Google Scholar 

  • Bateman, D. F. & Beer, S. V. (1965). Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis of Sclerotium rolfsii. Phytopathology, 55, 204–211.

  • Beute, M. K., Porter, D. M., & Hadley, B. A. (1975). Sclerotinia blight of peanut in North Carolina and Virginia and its chemical control. Plant Disease Reporter, 59, 697–701.

    CAS  Google Scholar 

  • Cessna, S. G., Sears, V. E., Dickman, M. B., & Low, P. S. (2000). Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell, 12, 2191–2199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chenault, K. D., Burns, J. A., Melouk, H. A., & Payton, M. E. (2002). Hydrolase activity in transgenic peanut. Peanut Science, 29, 89–95.

    Article  CAS  Google Scholar 

  • Chenault, K. D., Melouk, H. A., & Payton, M. E. (2005). Field reaction to sclerotinia blight among transgenic peanut lines containing antifungal genes. Crop Science, 45, 511–515.

    Article  CAS  Google Scholar 

  • Coffelt, T. A., & Porter, D. M. (1982). Screening peanuts for resistance to sclerotinia blight. Plant Disease, 66, 385–387.

    Article  Google Scholar 

  • Culbreath, A. K., Todd, J. W., Gorbet, D. W., Shokes, F. M., & Pappu, H. R. (1997). Field response of new peanut cultivar UF 91108 to tomato spotted wilt virus. Plant Disease, 81, 1410–1415.

    Article  Google Scholar 

  • Davidson, J. I., Jr., & McIntosh, F. P. (1973). Development of a small laboratory sheller for determining peanut milling quality. Journal American Peanut Research & Education Association 5, 95--108.

  • Diener, U. L., Jackson, C.R., Cooper, W. E., Stepes, R. J. & Davis, N. D. (1965). Invasion of peanut pods in the soil by Aspergillus flavus. Plant Disease Reporter, 49, 931–935.

  • Donaldson, P. A., Anderson, T., Lane, B. G., Davidson, A. L., & Simmonds, D. H. (2001). Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotinia sclerotiorum. Physiology Molecular Plant Pathology, 59, 297–307.

    Article  CAS  Google Scholar 

  • Dunwell, J. M., Gibbings, J. G., Mahmood, T., & Saqlan Naqvi, S. M. (2008). Germin and germin-like proteins: evolution, structure, and function. Critical Reviews in Plant Sciences, 27, 342–375.

    Article  CAS  Google Scholar 

  • Dutton, M. V., & Evans, C. S. (1996). Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Canadian Journal of Microbiology, 42, 881–895.

    Article  CAS  Google Scholar 

  • Ferrar, P. H., & Walker, J. R. L. (1993). o-diphenol oxidase inhibition–an additional role for oxalic acid in the phytopathogenic arsenal of Sclerotinia sclerotiorum and sclerotium rolfsii. Physiological and Molecular Plant Pathology, 43, 415–422.

    Article  CAS  Google Scholar 

  • He, X., Miyasaka, S. C., Zhu, Y., Moore, P. H., & Fitch, M. M. M. (2009). Taro (colocasia esculenta) transformed with wheat (Triticum aestivum) oxalate oxidase gene showed increased resistance to two taro pathogens phytophthora colocasiae and sclerotium rolfsii. Plant Biology, 11(S2), 335–336.

    Google Scholar 

  • He, X., Miyasaka, S. C., Fitch, M. M. M., Khuri, S., & Zhu, Y. (2013). Taro (colocasia esculenta) transformed with a wheat oxalate oxidase gene for improved resistance to taro pathogen phytophthora colocasiae. Hortscience, 48, 22–27.

    CAS  Google Scholar 

  • Hollowell, J. E., & Shew, B. B. (2001). Oxalic acid production by nine isolates of Sclerotinia minor. Proceedings of American Peanut Research Education Society, 33, 24.

    Google Scholar 

  • Hu, X., Bidney, D. L., Yalpani, N., Duvick, J. P., Crasta, O., Folkerts, O., & Lu, G. (2003). Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiology, 133, 170–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, J., Telenko, D. E. P., Phipps, P. M., & Grabau, E. A. (2014). Assessment of peanut quality and compositional characteristics among transgenic sclerotinia blight-resistant and non-transgenic susceptible cultivars. Journal of Agricultural and Food Chemistry, 62, 7877–7885.

    Article  CAS  PubMed  Google Scholar 

  • Hu, J., Telenko, D. E. P., Phipps, P. M., Hills, H., & Grabau, E. A. (2015). Quantifying transgene flow rate in transgenic sclerotinia blight-resistant peanut lines. Field Crops Research, 178, 69–76.

    Article  Google Scholar 

  • Iqbal, M. M., Nazir, F., Ali, S., Asif, M. A., Zafar, Y., Iqbal, J., & Ali, G. M. (2012). Over expression of rice chitinase gene in transgenic peanut (arachis hypogaea L.) improves resistance against leaf spot. Molecular Biotechnology, 50, 129–136.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Jarret, R. L., & Demski, J. W. (1997). Engineered resistance to tomato spotted wilt virus in transgenic peanut expressing the viral nucleocapsid gene. Transgenic Research, 6, 297–305.

    Article  CAS  Google Scholar 

  • Liang, H., Maynard, C. A., Allen, R. D., & Powell, W. A. (2001). Increased septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Molecular Biology, 45, 619–629.

    Article  CAS  PubMed  Google Scholar 

  • Livingstone, D. M., Hampton, J. L., Phipps, P. M., & Grabau, E. A. (2005). Enhancing resistance to sclerotinia minor in peanut by expressing a barley oxalate oxidase gene. Plant Physiology, 137, 1354–1362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, G. (2003). Engineering Sclerotinia sclerotiorum resistance in oilseed crops. African Journal of Biotechnology, 2, 509–516.

    Article  CAS  Google Scholar 

  • Mao, J., Burt, A. J., Ramputh, A. I., Simmonds, J., Cass, L., Hubbard, K., Miller, S., Altosaar, I., & Arnason, J. T. (2007). Diverted secondary metabolism and improved resistance to European corn borer (ostrinia nubilalis) in maize (Zea mays L.) transformed with wheat oxalate oxidase. Journal of Agricultural and Food Chemistry, 55, 2582–2589.

    Article  CAS  PubMed  Google Scholar 

  • Maxwell, D. P., & Lumsden, R. D. (1970). Oxalic acid production by Sclerotinia sclerotiorum in infected bean and in culture. Phytopathology, 60, 1395–1398.

    Article  CAS  Google Scholar 

  • Molla, K. A., Karmakar, S., Chanda, P. K., Ghosh, S., Sarkar, S. N., Datta, S. K., & Datta, K. (2013). Rice oxalate oxidase gene driven by green tissue-specific promoter increases tolerance to sheath blight pathogen (Rhizoctonia solani) in transgenic rice. Molecular Plant Pathology, 14, 910–922.

    Article  CAS  PubMed  Google Scholar 

  • Niu, C., Akasaka-Kennedy, Y., Faustinelli, P., Joshi, M., Rajasekaran, K., Yang, H., Chu, Y., Cary, J., & Ozias-Akins, P. (2009). Antifungal activity in transgenic peanut (arachis hypogaea L.) conferred by a nonheme chloroperoxidase gene. Peanut Science, 36, 126–132.

    Article  Google Scholar 

  • Partridge-Telenko, D., Hu, J., Livingstone, D., Shew, B., Phipps, P. M., & Grabau, E. A. (2011). Sclerotinia blight resistance in Virginia-type peanut transformed with a barley oxalate oxidase gene. Phytopathology, 101, 786–793.

    Article  CAS  PubMed  Google Scholar 

  • Phipps, P. M., & Beute, M. K. (1979). Population dynamics of cylindrocladium crotalariae microsclerotia in naturally-infested soil. Phytopathology, 69, 240–243.

    Article  Google Scholar 

  • Phipps, P. M., & Powell, N. L. (1984). Evaluation of criteria for the utilization of peanut leaf spot advisories in Virginia. Phytopathology, 74, 1189–1193.

    Article  Google Scholar 

  • Post, K. H., & Parry, D. (2011). Non-target effects of transgenic blight-resistant American chestnut (fagales: fagaceae) on insect herbivores. Environmental Entomology, 40, 955–963.

    Article  CAS  PubMed  Google Scholar 

  • Ramputh, A. I., Arnason, J. T., Cass, L., & Simmonds, J. A. (2002). Reduced herbivory of the European corn borer (ostrinia nubilalis) on corn transformed with germin, a wheat oxalate oxidase gene. Plant Science, 162, 431–440.

    Article  CAS  Google Scholar 

  • Romer Labs. (2007). Romer Labs Methods, Method: PI-000073-1, PI-0. Romer Labs®, Inc. www.romerlabs.com. Accessed 16 Jun 2015.

  • Schneider, M., Droz, E., Malnoë, P. I. A., Chatot, C., Bonnel, E., & Métraux, J. P. (2002). Transgenic potato plants expressing oxalate oxidase have increased resistance to oomycete and bacterial pathogens. Potato Research, 45, 177–185.

    Article  CAS  Google Scholar 

  • Simko, I., & Piepho, H. P. (2012). The area under the disease progress stairs: calculation, advantage, and application. Phytopathology, 102, 381–389.

    Article  PubMed  Google Scholar 

  • Smith, F. D., Phipps, P. M., & Stipes, R. J. (1992). Fluazinam: a new fungicide for control of sclerotinia blight and other soil borne diseases of peanut. Peanut Science, 19, 115–120.

    Article  CAS  Google Scholar 

  • Stuiver, M. H., & Custers, J. H. H. V. (2001). Engineering disease resistance in plants. Nature, 411, 865–868.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, C., Dunwell, J. M., Johnstone, C. E., Lay, V., Schmitt, M., Watson, H., & Nisbet, G. (1995). Degradation of oxalic acid by transgenic oilseed rape plants expressing oxalate oxidase. Euphytica, 85, 169–172.

    Article  CAS  Google Scholar 

  • Xu, L., Xiang, M., White, D., & Chen, W. (2015). pH dependency of sclerotial development and pathogenicity revealed by using genetically defined oxalate-minus mutants of Sclerotinia sclerotiorum. Environmental Microbiology, 17. doi:10.1111/1462-2920.12818.

  • Zhang, X. Y., Nie, Z. H., Wang, W. J., Leung, D. W. M., Xu, D. G., Chen, B. L., Chen, Z., Zeng, L. X., & Liu, E. E. (2013). Relationship between disease resistance and rice oxalate oxidases in transgenic rice. PloS One, 8(10), e78348. doi:10.1371/journal.pone.0078348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, Z., Humphrey, C. W., King, R. S., & Richard, J. L. (2005). Validation of an ELISA test kit for the detection of total aflatoxins in grain and grain products by comparison with HPLC. Mycopathologia, 159, 255–263.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the USDA National Institute of Food and Agriculture, Hatch project 221820. Funding was provided by the National Peanut Board, Virginia Peanut Growers’ Association, Virginia Agricultural Council, and United States Department of Agriculture, Southern Region IPM Program. We thank B. Keeling, S. Byrum, E. Hobbs, and J. Hampton for technical assistance in the laboratory and field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Grabau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Telenko, D.E.P., Phipps, P.M. et al. Comparative susceptibility of peanut genetically engineered for sclerotinia blight resistance to non-target peanut pathogens. Eur J Plant Pathol 145, 177–187 (2016). https://doi.org/10.1007/s10658-015-0831-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0831-4

Keywords

Navigation