Skip to main content
Log in

Using proteomic analysis to find the proteins involved in resistance against Sclerotinia sclerotiorum in adult Brassica napus

  • Original Research
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Sclerotinia disease, caused by Sclerotinia sclerotiorum, is one of the most serious plant diseases in China. Research on the mechanism of disease resistance to S. sclerotiorum will help solve control problems. In this study, near-isogenic lines were first used in combination with the proteomic technique. A comparison of protein expression profiles in a susceptible line with those in a resistant line during the interaction of adult Brassica napus with S. sclerotiorum resulted in the identification of 20 important proteins related to disease resistance. Those proteins were then determined to be involved in various functions, including pathogen resistance, antioxidation, and transcription regulation. Our finding showed that some proteins involved in defence—a glycine rich protein (GRP); a trypsin inhibitor protein (TIP); two heat shock proteins (HSPs); and a thiol methyltransferase (TMT)—were upregulated or expressed specially in the resistant B. napus lines. These proteins contribute to ROS (reactive oxygen species) elimination and pathogen-defence in the resistant line, which would help the host defend itself against S. sclerotiorum. As a consequence, the onset of PCD (programmed cell death) was delayed, and the spread of S. sclerotiorum was slowed in the resistant line. Presented results underline the role of specific proteins in the disease process. By building on these results, future research may help determine the genes that are important in conveying resistance to S. sclerotiorum in B. napus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Attieh, J., Djiana, R., Koonjul, P., Etienne, C., Sparace, S. A., & Saini, H. S. (2002). Cloning and functional expression of two plant thiol methyltransferases: a new class of enzymes involved in the biosynthesis of sulfur volatiles. Plant Molecular Biology, 50(3), 511–521.

    Article  PubMed  CAS  Google Scholar 

  • Attieh, J. M., Hanson, A. D., & Saini, H. S. (1995). Purification and characterization of a novel methyltransferase responsible for biosynthesis of halomethanes and methanethiol in Brassica oleracea. Journal of Biological Chemistry, 270(16), 9250–9257.

    Article  PubMed  CAS  Google Scholar 

  • Banzet, N., Richaud, C., Deveaux, Y., Kazmaier, M., Gagnon, J., & Triantaphylides, C. (1998). Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant Journal, 13(4), 519–527.

    Article  PubMed  CAS  Google Scholar 

  • Barna, B., Fodor, J., Harrach, B. D., Pogany, M., & Kiraly, Z. (2012). The Janus face of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and biotrophic pathogens. Plant Physiology and Biochemistry, 59, 37–43. doi:10.1016/j.plaphy.2012.01.014.

    Article  PubMed  CAS  Google Scholar 

  • Bateman, D. F., & Beer, S. V. (1965). Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathology, 55, 204–211.

    PubMed  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Bressano, M., Curetti, M., Giachero, L., Gil, S. V., Cabello, M., March, G., et al. (2010). Mycorrhizal fungi symbiosis as a strategy against oxidative stress in soybean plants. Journal of Plant Physiology, 167(18), 1622–1626. doi:10.1016/j.jplph.2010.06.024.

    Article  PubMed  CAS  Google Scholar 

  • Coll, N. S., Epple, P., & Dangl, J. L. (2011). Programmed cell death in the plant immune system. Cell Death and Differentiation, 18(8), 1247–1256. doi:10.1038/cdd.2011.37.

    Article  PubMed  CAS  Google Scholar 

  • Fulda, S., Mikkat, S., Stegmann, H., & Horn, R. (2011). Physiology and proteomics of drought stress acclimation in sunflower (Helianthus annuus L.). Plant Biology (Stuttgart, Germany), 13(4), 632–642. doi:10.1111/j.1438-8677.2010.00426.x.

    Article  CAS  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. doi:10.1016/j.plaphy.2010.08.016.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Fernandez, R., Prats, E., & Jorrin-Novo, J. V. (2010). Proteomics of plant pathogenic fungi. Journal of Biomedicine and Biotechnology, 2010, 932527. doi:10.1155/2010/932527.

    Article  PubMed  Google Scholar 

  • Gonzalez, I., Romero, J., Rodriguez, B. L., Perez-Castro, R., & Rojas, A. (2012). The immunobiology of the receptor of advanced glycation end-products: trends and challenges. Immunobiology. doi:10.1016/j.imbio.2012.09.005.

    Google Scholar 

  • Gorg, A., Drews, O., Luck, C., Weiland, F., & Weiss, W. (2009). 2-DE with IPGs. Electrophoresis, 30(Suppl 1), S122–S132. doi:10.1002/elps.200900051.

    Article  PubMed  Google Scholar 

  • Gorovits, R., Akad, F., Beery, H., Vidavsky, F., Mahadav, A., & Czosnek, H. (2007). Expression of stress-response proteins upon whitefly-mediated inoculation of tomato yellow leaf curlvirus in susceptible and resistant tomato plants. Molecular Plant-Microbe Interactions, 20(11), 1376–1383. doi:10.1094/MPMI-20-11-1376.

    Article  PubMed  CAS  Google Scholar 

  • Guan, C. Y., Li, F. Q., Li, X., Chen, S. Y., Wang, G. H., & Liu, Z. S. (2003). Resistance of the double-low rapeseed cultivar Xiangyou 15 (B. napus) to Sclerotinia Sclerotiorum. Acta Agronomica Sinica, 29(5), 715–718.

    Google Scholar 

  • Guo, X., & Stotz, H. U. (2010). ABA signaling inhibits oxalate-induced production of reactive oxygen species and protects against Sclerotinia sclerotiorum in Arabidopsis thaliana. European Journal of Plant Pathology, 128, 7–19.

    Article  CAS  Google Scholar 

  • Haruta, M., Major, I. T., Christopher, M. E., Patton, J. J., & Constabel, C. P. (2001). A Kunitz trypsin inhibitor gene family from trembling aspen (Populus tremuloides Michx.): cloning, functional expression, and induction by wounding and herbivory. Plant Molecular Biology, 46(3), 347–359.

    Article  PubMed  CAS  Google Scholar 

  • Hegedus, D. D., Li, R., Buchwaldt, L., Parkin, I., Whitwill, S., Coutu, C., et al. (2008). Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response to Sclerotinia sclerotiorum infection, wounding and defense hormone treatment. Planta, 228(2), 241–253. doi:10.1007/s00425-008-0733-1.

    Article  PubMed  CAS  Google Scholar 

  • Heller, J., & Tudzynski, P. (2011). Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. Annual Review of Phytopathology, 49, 369–390. doi:10.1146/annurev-phyto-072910-095355.

    Article  PubMed  CAS  Google Scholar 

  • Himanen, S. J., Nissinen, A., Auriola, S., Poppy, G. M., Stewart, C. N., Jr., Holopainen, J. K., et al. (2008). Constitutive and herbivore-inducible glucosinolate concentrations in oilseed rape (Brassica napus) leaves are not affected by Bt Cry1Ac insertion but change under elevated atmospheric CO2 and O3. Planta, 227(2), 427–437. doi:10.1007/s00425-007-0629-5.

    Article  PubMed  CAS  Google Scholar 

  • Hu, X., Bidney, D. L., Yalpani, N., Duvick, J. P., Crasta, O., Folkerts, O., et al. (2003). Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiology, 133(1), 170–181.

    Article  PubMed  CAS  Google Scholar 

  • Huang, H., Qi, S. D., Qi, F., Wu, C. A., Yang, G. D., & Zheng, C. C. (2010). NtKTI1, a Kunitz trypsin inhibitor with antifungal activity from Nicotiana tabacum, plays an important role in tobacco’s defense response. FEBS Journal, 277(19), 4076–4088. doi:10.1111/j.1742-4658.2010.07803.x.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J., Ge, X., & Sun, M. (2000). Modified CTAB protocol using a silica matrix for isolation of plant genomic DNA. Biotechniques, 28(3), 432–434.

    PubMed  Google Scholar 

  • Huerta-Ocampo, J. A., Leon-Galvan, M. F., Ortega-Cruz, L. B., Barrera-Pacheco, A., De Leon-Rodriguez, A., Mendoza-Hernandez, G., et al. (2011). Water stress induces up-regulation of DOF1 and MIF1 transcription factors and down-regulation of proteins involved in secondary metabolism in amaranth roots (Amaranthus hypochondriacus L.). Plant Biology (Stuttgart, Germany), 13(3), 472–482. doi:10.1111/j.1438-8677.2010.00391.x.

    Article  CAS  Google Scholar 

  • Itoh, N., Toda, H., Matsuda, M., Negishi, T., Taniguchi, T., & Ohsawa, N. (2009). Involvement of S-adenosylmethionine-dependent halide/thiol methyltransferase (HTMT) in methyl halide emissions from agricultural plants: isolation and characterization of an HTMT-coding gene from Raphanus sativus (daikon radish). BMC Plant Biology, 9, 116. doi:10.1186/1471-2229-9-116.

    Article  PubMed  Google Scholar 

  • Jofre, A., Molinas, M., & Pla, M. (2003). A 10-kDa class-CI sHsp protects E. coli from oxidative and high-temperature stress. Planta, 217(5), 813–819. doi:10.1007/s00425-003-1048-x.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329. doi:10.1038/nature05286.

    Article  PubMed  CAS  Google Scholar 

  • Karp, N. A., Spencer, M., Lindsay, H., O’Dell, K., & Lilley, K. S. (2005). Impact of replicate types on proteomic expression analysis. Journal of Proteome Research, 4(5), 1867–1871. doi:10.1021/pr050084g.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. S., Kim, Y. O., Ryu, H. J., Kwak, Y. S., Lee, J. Y., & Kang, H. (2003). Isolation of stress-related genes of rubber particles and latex in fig tree (Ficus carica) and their expressions by abiotic stress or plant hormone treatments. Plant and Cell Physiology, 44(4), 412–414.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. Y., Park, S. J., Jang, B., Jung, C. H., Ahn, S. J., Goh, C. H., et al. (2007). Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions. Plant Journal, 50(3), 439–451. doi:10.1111/j.1365-313X.2007.03057.x.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K. S., Min, J. Y., & Dickman, M. B. (2008). Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Molecular Plant-Microbe Interactions, 21(5), 605–612. doi:10.1094/MPMI-21-5-0605.

    Article  PubMed  CAS  Google Scholar 

  • Klopfleisch, R., & Gruber, A. D. (2012). Transcriptome and proteome research in veterinary science: what is possible and what questions can be asked? ScientificWorld Journal, 2012, 254962. doi:10.1100/2012/254962.

    Article  PubMed  Google Scholar 

  • Kuzniak, E., & Sklodowska, M. (2005). Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta, 222(1), 192–200. doi:10.1007/s00425-005-1514-8.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K., Lee, J., Kim, Y., Bae, D., Kang, K. Y., Yoon, S. C., et al. (2004). Defining the plant disulfide proteome. Electrophoresis, 25(3), 532–541. doi:10.1002/elps.200305677.

    Article  PubMed  CAS  Google Scholar 

  • Li, R., Rimmer, R., Buchwaldt, L., Sharpe, A. G., Seguin-Swartz, G., & Hegedus, D. D. (2004). Interaction of Sclerotinia sclerotiorum with Brassica napus: cloning and characterization of endo- and exo-polygalacturonases expressed during saprophytic and parasitic modes. Fungal Genetics and Biology, 41(8), 754–765. doi:10.1016/j.fgb.2004.03.002.

    Article  PubMed  CAS  Google Scholar 

  • Liang, Y., Srivastava, S., Rahman, M. H., Strelkov, S. E., & Kav, N. N. (2008). Proteome changes in leaves of Brassica napus L. as a result of Sclerotinia sclerotiorum challenge. Journal of Agricultural and Food Chemistry, 56(6), 1963–1976. doi:10.1021/jf073012d.

    Article  PubMed  CAS  Google Scholar 

  • Liang, Y., Strelkov, S. E., & Kav, N. N. (2009). Oxalic acid-mediated stress responses in Brassica napus L. Proteomics, 9(11), 3156–3173. doi:10.1002/pmic.200800966.

    Article  PubMed  CAS  Google Scholar 

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402–408. doi:10.1006/meth.2001.1262.

    Article  PubMed  CAS  Google Scholar 

  • Lorang, J., Kidarsa, T., Bradford, C. S., Gilbert, B., Curtis, M., Tzeng, S. C., et al. (2012). Tricking the guard: exploiting plant defense for disease susceptibility. Science, 338(6107), 659–662. doi:10.1126/science.1226743.

    Article  PubMed  CAS  Google Scholar 

  • Luo, M., Ding, L. W., Ge, Z. J., Wang, Z. Y., Hu, B. L., Yang, X. B., et al. (2012). The characterization of SaPIN2b, a plant trichome-localized proteinase inhibitor from Solanum americanum. International Journal of Molecular Sciences, 13(11), 15162–15176. doi:10.3390/ijms131115162.

    Article  PubMed  CAS  Google Scholar 

  • Mengiste, T. (2012). Plant immunity to necrotrophs. Annual Review of Phytopathology, 50, 267–294. doi:10.1146/annurev-phyto-081211-172955.

    Article  PubMed  CAS  Google Scholar 

  • Mishra, M., Mahajan, N., Tamhane, V. A., Kulkarni, M. J., Baldwin, I. T., Gupta, V. S., et al. (2012). Stress inducible proteinase inhibitor diversity in Capsicum annuum. BMC Plant Biology, 12, 217. doi:10.1186/1471-2229-12-217.

    Article  PubMed  CAS  Google Scholar 

  • Mukhtar, M. S., Carvunis, A. R., Dreze, M., Epple, P., Steinbrenner, J., Moore, J., et al. (2011). Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science, 333(6042), 596–601. doi:10.1126/science.1203659.

    Article  PubMed  CAS  Google Scholar 

  • Park, S. J., Kwak, K. J., Oh, T. R., Kim, Y. O., & Kang, H. (2009). Cold shock domain proteins affect seed germination and growth of Arabidopsis thaliana under abiotic stress conditions. Plant and Cell Physiology, 50(4), 869–878. doi:10.1093/pcp/pcp037.

    Article  PubMed  CAS  Google Scholar 

  • Parkhey, S., Naithani, S. C., & Keshavkant, S. (2012). ROS production and lipid catabolism in desiccating Shorea robusta seeds during aging. Plant Physiology and Biochemistry, 57, 261–267. doi:10.1016/j.plaphy.2012.06.008.

    Article  PubMed  CAS  Google Scholar 

  • Pucciariello, C., Parlanti, S., Banti, V., Novi, G., & Perata, P. (2012). Reactive oxygen species-driven transcription in Arabidopsis under oxygen deprivation. Plant Physiology, 159(1), 184–196. doi:10.1104/pp. 111.191122.

    Article  PubMed  CAS  Google Scholar 

  • Rahmanpour, S., Backhouse, D., & Nonhebel, H. M. (2010). Reaction of glucosinolate-myrosinase defence system in Brassica plants to pathogenicity factor of Sclerotinia sclerotiorum. European Journal of Plant Pathology, 128(4), 429–433.

    Article  CAS  Google Scholar 

  • Rollins, J. A., & Dickman, M. B. (1998). Increase in endogenous and exogenous cyclic AMP levels inhibits Sclerotial development in Sclerotinia sclerotiorum. Applied and Environmental Microbiology, 64(7), 2539–2544.

    PubMed  CAS  Google Scholar 

  • Sathiyaraj, G., Lee, O. R., Parvin, S., Khorolragchaa, A., Kim, Y. J., & Yang, D. C. (2011). Transcript profiling of antioxidant genes during biotic and abiotic stresses in Panax ginseng C. A. Meyer. Molecular Biology Reports, 38(4), 2761–2769. doi:10.1007/s11033-010-0421-7.

    Article  PubMed  CAS  Google Scholar 

  • Sattler, S. E., Gilliland, L. U., Magallanes-Lundback, M., Pollard, M., & DellaPenna, D. (2004). Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell, 16(6), 1419–1432. doi:10.1105/tpc.021360.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, F., Marnef, A., Cheung, M. K., Wilson, I., Hancock, J., Staiger, D., et al. (2010). A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8. Molecular Biology Reports, 37(2), 839–845. doi:10.1007/s11033-009-9636-x.

    Article  PubMed  CAS  Google Scholar 

  • Sexton, A. C., Whitten, A. R., & Howlett, B. J. (2006). Population structure of Sclerotinia sclerotiorum in an Australian canola field at flowering and stem-infection stages of the disease cycle. Genome, 49(11), 1408–1415. doi:10.1139/g06-101.

    Article  PubMed  Google Scholar 

  • Srinivasan, T., Kumar, K. R., & Kirti, P. B. (2009). Constitutive expression of a trypsin protease inhibitor confers multiple stress tolerance in transgenic tobacco. Plant and Cell Physiology, 50(3), 541–553. doi:10.1093/pcp/pcp014.

    Article  PubMed  CAS  Google Scholar 

  • Stotz, H. U., Sawada, Y., Shimada, Y., Hirai, M. Y., Sasaki, E., Krischke, M., et al. (2011). Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. Plant Journal, 67(1), 81–93. doi:10.1111/j.1365-313X.2011.04578.x.

    Article  PubMed  CAS  Google Scholar 

  • Swindell, W. R., Huebner, M., & Weber, A. P. (2007). Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics, 8, 125. doi:10.1186/1471-2164-8-125.

    Article  PubMed  Google Scholar 

  • Turoczy, Z., Kis, P., Torok, K., Cserhati, M., Lendvai, A., Dudits, D., et al. (2011). Overproduction of a rice aldo-keto reductase increases oxidative and heat stress tolerance by malondialdehyde and methylglyoxal detoxification. Plant Molecular Biology, 75(4–5), 399–412. doi:10.1007/s11103-011-9735-7.

    Article  PubMed  CAS  Google Scholar 

  • Verma, S., & Mishra, S. N. (2005). Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. Journal of Plant Physiology, 162(6), 669–677.

    Article  PubMed  CAS  Google Scholar 

  • Wan, C., Li, S., Wen, L., Kong, J., Wang, K., & Zhu, Y. (2007). Damage of oxidative stress on mitochondria during microspores development in Honglian CMS line of rice. Plant Cell Reports, 26(3), 373–382. doi:10.1007/s00299-006-0234-2.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C., Zhang, D. W., Wang, Y. C., Zheng, L., & Yang, C. P. (2012). A glycine-rich RNA-binding protein can mediate physiological responses in transgenic plants under salt stress. Molecular Biology Reports, 39(2), 1047–1053. doi:10.1007/s11033-011-0830-2.

    Article  PubMed  CAS  Google Scholar 

  • Wen, L., Liu, G., Li, S. Q., Wan, C. X., Tao, J., Xu, K. Y., et al. (2007). Proteomic analysis of anthers from Honglian cytoplasmic male sterility line rice and its corresponding maintainer and hybrid. Botanical Studies, 48(3), 293–309.

    CAS  Google Scholar 

  • Zhao, J., Buchwaldt, L., Rimmer, S. R., Sharpe, A., McGregor, L., Bekkaoui, D., et al. (2009). Patterns of differential gene expression in Brassica napus cultivars infected with Sclerotinia sclerotiorum. Molecular Plant Pathology, 10(5), 635–649. doi:10.1111/j.1364-3703.2009.00558.x.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J., Wang, J., An, L., Doerge, R. W., Chen, Z. J., Grau, C. R., et al. (2007). Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus. Planta, 227(1), 13–24. doi:10.1007/s00425-007-0586-z.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Li Shuimin for providing technical assistance with the MALDI–TOF/TOF MS analysis. We are grateful to Dr. Liu Yisong for assisting us with the bioinformatics analysis. This work was supported by the China Postdoctoral Science Foundation (Grant No. 20110490147) and the Special Financial Grant from China Postdoctoral Science Foundation (Grant No. 2012 T50693). This work was also supported by the Foundation of Science and Technology Project of Hunan Province (Grant No. 2011RS4007) and Project supported by Hunan Provincial Natural Science Foundation of China (13JJ2027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Wen or Chun-Yun Guan.

Additional information

The two institutions contribute the same.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, L., Tan, TL., Shu, JB. et al. Using proteomic analysis to find the proteins involved in resistance against Sclerotinia sclerotiorum in adult Brassica napus . Eur J Plant Pathol 137, 505–523 (2013). https://doi.org/10.1007/s10658-013-0262-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0262-z

Keywords

Navigation