Skip to main content

Advertisement

Log in

Real-time PCR as a promising tool to monitor growth of Venturia spp. in scab-susceptible and -resistant apple leaves

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Apple scab, the most important disease of apple worldwide, is caused by Venturia inaequalis. Currently, evaluation of fungal pathogenicity and host resistance is based on a symptomatic disease rating. However, this method does not provide an accurate measurement of the degree of infection and cannot detect early fungal development in symptomless leaves. In this study, a Venturia-specific real-time PCR assay was developed using primers designed around the specific internal transcribed spacer 2 (ITS2) region of the 5.8S rRNA gene. Using SYBR® Green I technology, the assay can accurately quantify Venturia DNA over a concentration range of at least five orders of magnitude. Detection sensitivities were in the order of 100 fg. The method was used to quantify Venturia genomic DNA levels in leaves of three apple cultivars with different levels and types of scab resistance and artificially infected with V. inaequalis. The assay clearly discriminated between Venturia levels in monogenic resistant (‘Topaz’), polygenic resistant (‘Discovery’), and susceptible (‘Golden Delicious’) cultivars, and proved especially useful to quantify pathogen levels during the initial latent stage of infection. The real-time PCR data of ‘Golden Delicious’ were consistent with the observed evolution of the degree of sporulation during a time-course experiment. Although measurements were influenced by the presence of co-extracted PCR-inhibitors, the impact of these compounds was independent of the apple cultivar or the initial amount of fungal DNA present. In conclusion, real-time PCR amplification of the ITS2-5.8S rDNA of Venturia spp. is a faster, more objective and more sensitive method to monitor fungal growth and to evaluate host resistance than phenotypic disease rating scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bénaouf, G., & Parisi, L. (1998). Characterization of Venturia inaequalis pathogenicity on leaf discs of apple trees. European Journal of Plant Pathology, 104, 785–793.

    Article  Google Scholar 

  • Borneman, J., & Hartin, R. J. (2000). PCR primers that amplify fungal rRNA genes from environmental samples. Applied and Environmental Microbiology, 66, 4356–4360.

    Article  PubMed  CAS  Google Scholar 

  • Bowen, J. A., Mesarich, C. H., Bus, V. G. M., Beresford, R. M., Plummer, K. M., & Templeton, M. D. (2011). Venturia inaequalis: the causal agent of apple scab. Molecular Plant Pathology, 12, 105–122.

    Google Scholar 

  • Brouwer, M., Lievens, B., Van Hemelrijck, W., Van den Ackerveken, G., Cammue, B. P. A., & Thomma, B. P. H. J. (2003). Quantification of disease progression of several microbial pathogens on Arabidopsis thaliana using real-time fluorescence PCR. FEMS Microbiology Letters, 228, 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Bus, V., Rikkerink, E., Aldwinckle, H. S., Caffier, V., Durel, C. E., Gardiner, S., et al. (2009). A proposal for the nomenclature of Venturia inaequalis races. Acta Horticulturae, 814, 739–746.

    Google Scholar 

  • Chevalier, M., Lespinasse, Y., & Renaudin, S. (1991). A microscopic study of the different classes of symptoms coded by the Vf gene in apple for resistance to scab (Venturia inaequalis). Plant Pathology, 40, 249–256.

    Article  Google Scholar 

  • Croxall, H. E., Gwynne, D. C., & Jenkins, J. E. E. (1952). The rapid assessment of apple scab on leaves. Plant Pathology, 1, 39–41.

    Article  Google Scholar 

  • Debode, J., Van Hemelrijck, W., Baeyen, S., Creemers, P., Heungens, K., & Maes, M. (2009). Quantitative detection and monitoring of Colletotrichum acutatum in strawberry leaves using real-time PCR. Plant Pathology, 58, 504–514.

    Article  CAS  Google Scholar 

  • Develey-Rivière, M. P., & Galiana, E. (2007). Resistance to pathogens and host developmental stage: a multifaceted relationship within the plant kingdom. New Phytologist, 175, 405–416.

    Article  PubMed  Google Scholar 

  • Gessler, C., Patocchi, A., Sansavini, S., Tartarini, S., & Gianfranceschi, L. (2006). Venturia inaequalis resistance in apple. Critical Reviews in Plant Sciences, 25, 473–503.

    Article  CAS  Google Scholar 

  • Gu, G., Hu, J., Cevallos-Cevallos, J. M., Richardson, S. M., Bartz, J. A., & van Bruggen, A. H. C. (2011). Internal colonization of Salmonella enterica serovar Typhimurium in tomato plants. PLoS One. doi:10.1371/journal.pone.0027340.

  • Heid, C. A., Stevens, J., Livak, K. J., & Williams, P. M. (1996). Real time quantitative PCR. Genome Research, 6, 986–994.

    Article  PubMed  CAS  Google Scholar 

  • Hrazdina, G. (2003). Response of scab-susceptible (McIntosh) and scab-resistant (Liberty) apple tissues to treatment with yeast extract and Venturia inaequalis. Phytochemistry, 64, 485–492.

    Article  PubMed  CAS  Google Scholar 

  • Hu, X., Nazar, R. N., & Robb, J. (1993). Quantification of Verticillium biomass in wilt disease development. Physiological and Molecular Plant Pathology, 42, 23–36.

    Article  CAS  Google Scholar 

  • Josefsen, L., Droce, A., Sondergaard, T. E., Sorensen, J. L., Bormann, J., Schafer, W., et al. (2012). Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum. Autophagy, 8, 326–337.

    Article  PubMed  CAS  Google Scholar 

  • Köller, W., Parker, D. M., Turechek, W. W., Avila-Adame, C., & Cronshaw, K. (2004). A two-phase resistance response of Venturia inaequalis populations to the QoI fungicides kresoxim-methyl and trifloxystrobin. Plant Disease, 88, 537–544.

    Article  Google Scholar 

  • Korsman, J., Meisel, B., Kloppers, F. J., Crampton, B. G., & Berger, D. K. (2012). Quantitative phenotyping of grey leaf spot disease in maize using real-time PCR. European Journal of Plant Pathology, 133, 461–471.

    Article  CAS  Google Scholar 

  • Lamar, R. T., Schoenike, B., Vanden Wymelenberg, A., Stewart, P., Dietrich, D. M., & Cullen, D. (1995). Quantitation of fungal mRNAs in complex substrates by reverse transcription PCR and its application to Phanerochaete chrysosporium-colonized soil. Applied and Environmental Microbiology, 61, 2122–2126.

    PubMed  CAS  Google Scholar 

  • Lee, S. B., & Taylor, J. W. (1992). Phylogeny of five fungus-like protoctistan Phytophthora species, inferred from the internal transcribed spacers of ribosomal DNA. Molecular Biology and Evolution, 9, 636–653.

    PubMed  CAS  Google Scholar 

  • Lespinasse, Y., Pinet, C., & Parisi, L. (2002). European research for durable resistance to scab on apple: the DARE project. Acta Horticulturae, 595, 17–22.

    Google Scholar 

  • Lievens, B., Brouwer, M., Vanachter, A. C. R. C., Cammue, B. P. A., & Thomma, B. P. H. J. (2006). Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples. Plant Science, 171, 155–165.

    Article  CAS  Google Scholar 

  • MacHardy, W. E. (1996). Apple Scab: biology, epidemiology and management. Saint Paul: The American Phytopathological Society Press.

    Google Scholar 

  • Mahe, A., Grisvard, J., & Dron, M. (1992). Fungal-specific and plant-specific gene markers to follow the bean anthracnose infection process and normalize a bean chitinase mRNA induction. Molecular Plant-Microbe Interactions, 5, 242–248.

    Article  CAS  Google Scholar 

  • Morrison, T. B., Weis, J. J., & Wittwer, C. T. (1998). Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. BioTechniques, 24, 954–962.

    PubMed  CAS  Google Scholar 

  • Ostle, B. (1954). Correlation methods. In B. Ostle (Ed.), Statistics in research (pp. 174–201). Ames: Iowa State College Press.

    Google Scholar 

  • Parisi, L., Lespinasse, Y., Guillaumes, J., & Kruger, J. (1993). A new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene. Phytopathology, 83, 533–537.

    Article  Google Scholar 

  • Qi, M., & Yang, Y. (2002). Quantification of Magnaporthe grisea during infection of rice plants using real-time polymerase chain reaction and northern blot/phosphoimaging analyses. Phytopathology, 92, 870–876.

    Article  PubMed  CAS  Google Scholar 

  • Schena, L., Nigro, F., Ippolito, A., & Gallitelli, D. (2004). Real-time quantitative PCR: a new technology to detect and study phytopathogenic and antagonistic fungi. European Journal of Plant Pathology, 110, 893–908.

    Article  CAS  Google Scholar 

  • Schnabel, G., Schnabel, E. L., & Jones, A. L. (1999). Characterization of ribosomal DNA from Venturia inaequalis and its phylogenetic relationship to rDNA from other tree-fruit Venturia species. Phytopathology, 89, 100–108.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, D. V., Gordon, T. R., Hansen, J., & Kirkpatrick, S. C. (2010). Relationship between the extent of colonization by Verticillium dahliae and symptom expression in the strawberry (Fragaria × ananassa) genotypes resistant to verticillium wilt. Plant Pathology, 59, 376–381.

    Article  Google Scholar 

  • Stehmann, C., Pennycook, A., & Plummer, K. M. (2001). Molecular identification of a sexual interloper: the pear pathogen, Venturia pyrina, has sex on apple. Phytopathology, 91, 633–641.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, A. E., Gardiner, D. M., White, R. G., Munn, A. L., & Manners, J. M. (2008). Phases of infection and gene expression of Fusarium graminearum during crown rot disease of wheat. Molecular Plant-Microbe Interactions, 21, 1571–1581.

    Article  PubMed  CAS  Google Scholar 

  • Thomma, B. P. H. J., Eggermont, K., Tierens, K. F. M., & Broekaert, W. F. (1999). Requirement of functional EIN2 (ethylene insensitive 2) gene for efficient resistance of Arabidopsis thaliana to infection by Botrytis cinerea. Plant Physiology, 121, 1093–1101.

    Article  PubMed  CAS  Google Scholar 

  • Towsend, G. R., & Heuberger, J. W. (1943). Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Reports, 24, 340–343.

    Google Scholar 

  • Turechek, W. W. (2004). Apple diseases and their management. In S. A. M. H. Naqvi (Ed.), Diseases of fruits and vegetables. Diagnosis and management. Volume I (pp. 1–108). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Vandemark, G. J., Barker, B. M., & Gritsenko, M. A. (2002). Quantifying Aphanomyces euteiches in alfalfa with a fluorescent polymerase chain reaction assay. Phytopathology, 92, 265–272.

    Article  PubMed  CAS  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. A. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Shinsky, & T. J. White (Eds.), PCR Protocols: a guide to methods and applications (pp. 315–322). San Diego: Academic.

    Google Scholar 

  • Wilson, I. G. (1997). Inhibition and facilitation of nucleic acid amplification. Applied and Environmental Microbiology, 63, 3741–3751.

    PubMed  CAS  Google Scholar 

  • Zubini, P., Baraldi, E., De Santis, A., Bertolini, P., & Mari, M. (2007). Expression of anti-oxidant enzyme genes in scald-resistant ‘Belfort’ and scald-susceptible ‘Granny Smith’ apples during cold storage. The Journal of Horticultural Science and Biotechnology, 82, 149–155.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by a PhD grant of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). The authors thank Valérie Caffier from INRA (Angers, France) for kindly providing V. inaequalis isolates on PDA. Our gratitude also goes to Jane Debode from the Flemish Institute for Agriculture and Fishery Research (ILVO) in Merelbeke (Belgium), and to Bart Lievens from the Scientia Terrae Research Institute (Sint-Katelijne-Waver, Belgium) for their advice and support on protocols for extraction of gDNA from plant tissue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Keulemans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniëls, B., De landtsheer, A., Dreesen, R. et al. Real-time PCR as a promising tool to monitor growth of Venturia spp. in scab-susceptible and -resistant apple leaves. Eur J Plant Pathol 134, 821–833 (2012). https://doi.org/10.1007/s10658-012-0058-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-012-0058-6

Keywords

Navigation