Skip to main content
Log in

Development of a novel inducible bioluminescent and antibiotic resistance tagging system and its use to investigate the role of antibiotic production by Pectobacterium carotovorum ssp. carotovorum during potato tuber infection

  • Original Research
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

We report the construction of a novel Tn7 vector for the tagging and enumeration of target bacteria from complex microbial communities. The system utilises a cassette for inducible bioluminescence and tetracycline resistance that integrates at a defined neutral position present in most Gram-negative species. We used this approach to chromosomally tag Pectobacterium such that it could be enumerated in mixed consortia without placing a significant bioburden on the tagged strain. Two Pectobacterium strains, a carbapenem antibiotic producer and an isogenic knock-out strain were tagged using this system. The modified Pectobacterium strains were used to compare the extent to which potato tuber-associated and endophytic bacteria can gain advantage and multiply in planta, utilising the nutrients released by a Pectobacterium infection, when the infecting Pectobacterium is either an antibiotic producer (Car+) or a carbapenem knock-out (Car−) strain. We show that the ability to synthesise carbapenem has a significant effect upon Pectobacterium numbers throughout the course of the infection. Whilst limiting the number of other bacterial species, carbepenem production allows the Pectobacterium to replicate to higher titres in the rotting tuber. We anticipate that the Tn7 tagging vector will be of use to other researchers studying ecological interactions in complex environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ausubel, F. H., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., et al. (1994). Current Protocols in Molecular Biology. Wiley: New York.

    Google Scholar 

  • Bainton, N. J., Stead, P., Chhabra, S. R., Bycroft, B. W., Salmond, G. P. C., Stewart, G. S. A. B., et al. (1992). N-(3-oxohexanoyl)-L homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochemistry Journal, 288, 997–1004.

    CAS  Google Scholar 

  • Bertrand, K. P., Postle, K., Wray, L. V., Jr., & Reznikoff, W. S. (1983). Overlapping divergent promoters control expression of Tn10 tetracycline resistance. Gene, 23, 149–156.

    Article  CAS  PubMed  Google Scholar 

  • Bolivar, F., Rodriguez, R. L., Greene, P. J., Betlach, M. C., Heyneker, H. L., & Boyer, H. W. (1977). Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene, 2, 95–113.

    Article  CAS  PubMed  Google Scholar 

  • Choi, K. H., Gaynor, J. B., White, K. G., Lopez, C., Bosio, C. M., Karkhoff-Schweizer, R. R., et al. (2005). A Tn7 -based broad-range bacterial cloning and expression system. Nature Methods, 2, 443–448.

    Article  CAS  PubMed  Google Scholar 

  • Corbel, S. Y., & Rossi, F. M. (2002). Latest developments and in vivo use of the Tet system: ex vivo and in vivo delivery of tetracycline-regulated genes. Current Opinion Biotechnology, 13, 448–452.

    Article  CAS  Google Scholar 

  • Coulthurst, S. J., Barnard, A. M. L., & Salmond, G. P. C. (2005). Regulation and biosynthesis of carbapenem antibiotics in bacteria. Nature Review Microbiology, 3, 295–306.

    Article  CAS  Google Scholar 

  • Dandie, C. E., Larrainzar, E. G., Mark, L., O’Gara, F., & Morrissey, J. P. (2005). Establishment of DsRed.T3_S4T as an improved autofluorescent marker for microbial ecology applications. Environmental Microbiology, 7, 1818–1825.

    Article  CAS  PubMed  Google Scholar 

  • Holden, M. T. G., McGowan, S. J., Bycroft, B. W., Stewart, G. S. A. B., Williams, P., & Salmond, G. P. C. (1998). Cryptic carbapenem antibiotic production genes are widespread in Erwinia carotovora: facile trans activation by the carR transcriptional regulator. Microbiology, 144, 1495–1508.

    Article  CAS  PubMed  Google Scholar 

  • Jansson, J. K. (2003). Marker and reporter genes: illuminating tools for environmental microbiologists. Current Opinion in Microbiology, 6, 310–316.

    Article  CAS  PubMed  Google Scholar 

  • Jones, S., Yu, B., Bainton, N. J., Birdsall, M., Bycroft, B. W., Chhabra, S. R., et al. (1993). The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO Journal, 12, 2477–2482.

    CAS  PubMed  Google Scholar 

  • Liu, H., Coulthurst, S. J., Pritchard, L., Hedley, P. E., Ravensdale, M., Humphris, S., et al. (2008). Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathogenes, 4, e1000093.

    Article  Google Scholar 

  • Llama-Palacios, A., Lopez-Solanilla, E., & Rodriguez-Palenzuela, P. (2002). The ybiT gene of Erwinia chrysanthemi codes for a putative ABC transporter and is involved in competitiveness against endophytic bacteria during infection. Applied Environmental Microbiology, 68, 1624–1630.

    Article  CAS  Google Scholar 

  • Mazzola, M., Cook, R. J., Thomashow, L. S., Weller, D. M., & Pierson, L. S. (1992). Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Applied Environmental Microbiology, 58, 2616–2624.

    CAS  Google Scholar 

  • McGowan, S., Sebaihia, M., Jones, S., Yu, B., Bainton, N., Chan, P. F., et al. (1995). Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. Microbiology, 141, 541–550.

    Article  CAS  PubMed  Google Scholar 

  • McGowan, J. S., Sebaihia, M., OLeary, S., Hardie, K. R., Williams, P., Stewart, G. S. A. B., et al. (1997). Analysis of carbapenem gene cluster of Erwinia carotovora: definition of the antibiotic biosyntethic genes and evidence for a novel β-lactam resistence mechanism. Molecular Microbiology, 26, 545–556.

    Article  CAS  PubMed  Google Scholar 

  • McGowan, S. J., Barnard, A. M., Bosgelmez, G., Sebaihia, M., Simpson, N. J., Thomson, N. R., et al. (2005). Carbapenem antibiotic biosynthesis in Erwinia carotovora is regulated by physiological and genetic factors modulating the quorum sensing-dependent control pathway. Molecular Microbiology, 55, 526–545.

    Article  CAS  PubMed  Google Scholar 

  • McKenzie, G. J., & Craig, N. L. (2006). Fast, easy and efficient: site-specific insertion of transgenes into Enterobacterial chromosomes using Tn7 without need for selection of the insertion event. BMC Microbiology, 6, 39.

    Article  PubMed  Google Scholar 

  • Milton, D. L., O'Toole, R., Hörstedt, P., & Wolf-Watz, H. (1996). Flagellin A is essential for the virulence of Vibrio anguillarum. Journal of Bacteriology, 178, 1310–1319.

    CAS  PubMed  Google Scholar 

  • Perehinec, T. M., Qazi, S. N. A., Gaddipati, S. R., Salisbury, V., Rees, C. E. D., & Hill, P. J. (2007). Construction and evaluation of multisite recombinatorial (Gateway) cloning vectors for gram-positive bacteria. BMC Molecular Biology, 8, 80.

    Article  PubMed  Google Scholar 

  • Pérombelon, M. C. M. (2002). Potato diseases caused by soft rot Erwinias: an overview of pathogenesis. Plant Pathology, 51, 1–12.

    Article  Google Scholar 

  • Peters, J. E., & Craig, N. L. (2001). Tn7: smarter than we thought. Nature Reviews Molecular Cell Biology, 2, 806–814.

    Article  CAS  PubMed  Google Scholar 

  • Pirhonen, M., Flego, D., Heikineimo, R., & Palva, E. T. (1993). A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO Journal, 12, 2467–2476.

    CAS  PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Sayler, G. S., Fleming, J. T., & Nivens, D. E. (2001). Gene expression monitoring in soils by mRNA analysis and gene lux fusions. Current Opinion in Biotechnology, 12, 455–460.

    Article  CAS  PubMed  Google Scholar 

  • Swift, S., Winson, M. K., Chan, P. F., Bainton, N. J., Birdsall, M., Reeves, P. J., et al. (1993). A novel strategy for the isolation of luxI homologues: evidence for the widespread distribution of a LuxR: LuxI superfamily in enteric bacteria. Molecular Microbiology, 10, 511–520.

    Article  CAS  PubMed  Google Scholar 

  • Welch, M., Todd, D. E., Whitehead, N. A., McGowan, S. J., Bycroft, B. W., & Salmond, G. P. C. (2000). N-acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia. EMBO Journal, 19, 631–641.

    Article  CAS  PubMed  Google Scholar 

  • Whitehead, N. A., Byers, J. T., Commander, P., Corbett, J. M., Coulthurst, S. J., Everson, L., et al. (2002). The regulation of virulence in phytopathogenic Erwinia species: quorum sensing, antibiotics and ecological considerations. Antonie van Leeuwenhoek, 81, 223–231.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support for Katalin Kovács from the European Commission (Marie Curie Fellowship QLK1-CT-2000-60022 “Training site in the microbiological safety of foods”) is gratefully acknowledged. We thank Gregory McKenzie for the donation of the pGRG25 vector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupert G. Fray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovács, K., Hill, P.J., Grierson, D. et al. Development of a novel inducible bioluminescent and antibiotic resistance tagging system and its use to investigate the role of antibiotic production by Pectobacterium carotovorum ssp. carotovorum during potato tuber infection. Eur J Plant Pathol 125, 655–664 (2009). https://doi.org/10.1007/s10658-009-9513-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-009-9513-4

Keywords

Navigation