Skip to main content
Log in

Impact of Erysiphe alphitoides on transpiration and photosynthesis in Quercus robur leaves

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Oak powdery mildew, (Erysiphe alphitoides) causes one of the most common diseases of oaks. We assessed the impact of this pathogen on photosynthesis and water relations of infected leaves using greenhouse-grown oak seedlings. Transpiration of seedlings infected by oak powdery mildew was also investigated. Altogether, E. alphitoides had a low impact on host gas exchange whether at the leaf or whole plant scale. Maximal stomatal conductance of infected leaves was reduced by 20–30% compared to healthy controls. Severely infected seedlings did not experience any detectable change of whole plant transpiration. The reduction in net CO2 assimilation, An, was less than proportional to the fraction of leaf area infected. Powdery mildew reduced both the maximal light-driven electron flux (Jmax) and the apparent maximal carboxylation velocity (Vcmax) although Vcmax was slightly more impacted than Jmax. No compensation for the infection occurred in healthy leaves of partly infected seedlings as the reduced photosynthesis in the infected leaves was not paralleled by increased An levels in the healthy leaves of the seedlings. However, E. alphitoides had a strong impact on the leaf life-span of infected leaves. It is concluded that the moderate effect of E. alphitoides on oak might be related to the small impact on net CO2 assimilation rates and on tree transpiration; nevertheless, the severe reduction in leaf life-span of heavily infected leaves may lead to decreased carbon uptake over the growth season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ayres, P. G., & Zadoks, J. C. (1979). Combined effects of powdery mildew disease and soil water level on the water relations and growth of barley. Physiological Plant Pathology, 14, 347–361. doi:10.1016/0048-4059(79) 90054-7.

    Article  Google Scholar 

  • Bassanezi, R. B., Amorim, L., Bergamin Filho, A., & Berger, R. D. (2002). Gas exchange and emission of chlorophyll fluorescence during the monocycle of rust, angular leaf spot and anthracnose on bean leaves as a function of their trophic characteristics. Journal of Phytopathology, 150, 37–47. doi:10.1046/j.1439-0434.2002.00714.x.

    Article  CAS  Google Scholar 

  • Bastiaan, L. (1991). Ratio between virtual and visual lesion size as a measure to describe reduction in leaf photosynthesis of rice due to leaf blast. Phytopathology, 81, 611–615. doi:10.1094/Phyto-81-611.

    Article  Google Scholar 

  • Bauer, H., Plattner, K., & Volgger, W. (2000). Photosynthesis in Norway spruce seedlings infected by the needle rust Chrysomyxa rhododendri. Tree Physiology, 20, 211–216.

    PubMed  CAS  Google Scholar 

  • Edwards, M. C., & Ayres, P. G. (1982). Seasonal changes in resistance of Quercus petraea (sessile oak) leaves to Microsphaera alphitoides. Transactions of the British Mycological Society, 78, 569–571.

    Article  Google Scholar 

  • Erickson, J. E., Stanosz, G. R., & Kruger, E. L. (2003). Photosynthetic consequences of Marssonina leaf spot differ between two poplar hybrids. The New Phytologist, 161, 577–583. doi:10.1046/j.1469-8137.2003.00968.x.

    Google Scholar 

  • Ethier, G. J., & Livingston, N. J. (2004). On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-vonCaemmerer-Berry photosynthesis model. Plant, Cell & Environment, 27, 137–153. doi:10.1111/j.1365-3040.2004.01140.x.

    Article  CAS  Google Scholar 

  • Farquhar, G. D., Ehleringer, J. R., & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology, 40, 503–537. doi:10.1146/annurev.pp. 40.060189.002443.

    Article  CAS  Google Scholar 

  • Foex, M. E. (1941). L’invasion des chênes d’europe par le blanc ou oidium. Revue des Eaux et Forêts, 79, 338–349.

    Google Scholar 

  • Holloway, P. J., Maclean, D. J., & Scott, K. J. (1992). Electron transport in thylakoids isolated from barley leaves infected by the powdery mildew fungus (Erisiphe graminis DC. Ex Merat f.sp. hordei marchal). The New Phytologist, 120, 145–151. doi:10.1111/j.1469-8137.1992.tb01067.x.

    Article  Google Scholar 

  • Hewitt, H. G., & Ayres, P. G. (1975). Changes in CO2 and water vapour exchange rates in leaves of Quercus robur infected by Microspheara alphitoides (powdery mildew). Physiological Plant Pathology, 7, 127–137. doi:10.1016/0048-4059(75) 90003-X.

    Article  Google Scholar 

  • Hewitt, H. G., & Ayres, P. G. (1976). Effect of infection by Microsphaera alphitoides (powdery mildew) on carbohydrate levels and translocation in seedlings of Quercus robur. The New Phytologist, 77, 379–390. doi:10.1111/j.1469-8137.1976.tb01527.x.

    Article  CAS  Google Scholar 

  • Lakso, A. N., Pratt, C., Pearson, R. C., Pool, R. M., Seem, R. C., & Welser, M. (1982). Photosynthesis, transpiration and water use effeciency of mature grape leaves infected with Uncinula nectar (powdery mildew). Phytopathology, 72, 232–236. doi:10.1094/Phyto-72-232.

    Article  Google Scholar 

  • Lopes, D. B., & Berger, R. D. (2001). The effect of rust and anthracnose on the photosynthetic competence of diseased bean. leaves. Phytopathology, 91, 2121–2220. doi:10.1094/PHYTO.2001.91.2.212.

    Article  Google Scholar 

  • Marçais, B., & Bréda, N. (2006). Role of an opportunistic pathogen in the decline of stressed oak trees. Journal of Ecology, 94, 1214–1223. doi:10.1111/j.1365-2745.2006.01173.x.

    Article  Google Scholar 

  • Mayr, S., Siller, C., Kriss, M., Oberhuber, W., & Bauer, H. (2001). Photosynthesis in rust-infected adult Norway spruce in the field. The New Phytologist, 151, 683–689. doi:10.1046/j.0028-646x.2001.00222.x.

    Article  CAS  Google Scholar 

  • Mignucci, J. S., & Boyer, J. S. (1979). Inhibition of photosynthesis and transpiration in soybean infected by Microsphaera diffuse. Phytopathology, 69, 227–230. doi:10.1094/Phyto-69-227.

    Article  CAS  Google Scholar 

  • Niederleitner, S., & Knoppik, D. (1997). Effects of the chery leaf spot pathogen Blumeriella jaapii on gas exchange before and after expression of symptoms on cherry leaves. Physiol. Mol.r Plant Path, 51, 145–153.

    Article  Google Scholar 

  • Pennypacker, B. W., Knievel, D. P., Leath, K. T., Pell, E. J., & Hill, R. R,. Jr. (1990). Analysis of photosynthesis in resistant and susceptible Alfalfa clones infected with Verticillium albo-atrum. Phytopathology, 80, 1300–1306. doi:10.1094/Phyto-80-1300.

    Article  CAS  Google Scholar 

  • Pinkard, E. A., & Mohammed, C. L. (2006). Photosynthesis of Eucalyptus globulus with Mycosphaerella leaf disease. The New Phytologist, 170, 119–127. doi:10.1111/j.1469-8137.2006.01645.x.

    Article  PubMed  CAS  Google Scholar 

  • Prats, E., Gay, A. P., Mur, L. A. J., Thomas, B. J., & Carver, T. L. W. (2006). Stomatal lock-open, a consequence of epidermal cell death, follows transient suppression of stomatal opening in barley attacked by Blumeria graminis. Journal of Experimental Botany, 57, 2211–2226. doi:10.1093/jxb/erj186.

    Article  PubMed  CAS  Google Scholar 

  • Robert, C., Bancal, M. O., Ney, B., & Lannou, C. (2004). Wheat leaf photosynhesis loss due to leaf rust, with respect to lesion development and leaf nitrogen status. The New Phytologist, 165, 227–241. doi:10.1111/j.1469-8137.2004.01237.x.

    Article  Google Scholar 

  • Robert, C., Bancal, M. O., Lannou, C., & Ney, B. (2006). Quantification of the effects of Septoria tritici blotch on wheat leaf gas exchange with respect to lesion age, leaf number, and leaf nitrogen status. Journal of Experimental Botany, 57, 225–234. doi:10.1093/jxb/eri153.

    Article  PubMed  CAS  Google Scholar 

  • Roloff, I., Scherm, H., & van Iesel, M. W. (2004). Photosynthesis of blueberry leaves as affected by Septoria leaf spot and abiotic leaf damage. Plant Disease, 88, 397–401. doi:10.1094/PDIS.2004.88.4.397.

    Article  Google Scholar 

  • Sabri, N., Dominy, P. J., & Clarke, D. D. (1997). The relative tolerance of wild and cultivated oats to infection by Erysiphe graminis f.sp. avenae: II. the effects of infection on photosynthesis and respiration. Physiological and Molecular Plant Pathology, 50, 321–335. doi:10.1006/pmpp.1997.0095.

    Article  Google Scholar 

  • Shtienberg, D. (1992). Effects of foliar diseases on gas exchange processes: a comparative study. Phytopathology, 82, 760–765. doi:10.1094/Phyto-82-760.

    Article  Google Scholar 

  • Soutrenon, A. (1998). Une experimentation pluri-annuelle confirme l’impact de l’oïdium sur de jeunes sujets. Les cahiers du DSF, 1-2000 (la santé des forets [France] en 1997), pp. 93–94. Paris: Min. Agri. Peche (DERF).

    Google Scholar 

  • Thomas, F. M., Blank, R., & Hartmann, G. (2002). Abiotic and biotic factors and their interactions as causes of oak decline in central Europe. Forest Pathology, 32, 277–307. doi:10.1046/j.1439-0329.2002.00291.x.

    Article  Google Scholar 

  • Wright, D. P., Baldroni, B. C., Shophord, M. C., & Scholes, J. D. (1995). Source-sink relationships in Wheat leaves infected with powdery mildew. II. Alterations in carbohydrates in carbohydrate metabolism. Physiological and Molecular Plant Pathology, 47, 255–267.

    Google Scholar 

Download references

Acknowledgements

We wish to thank Olivier Caël and Beranger Bertin for their technical assistance

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Marçais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajji, M., Dreyer, E. & Marçais, B. Impact of Erysiphe alphitoides on transpiration and photosynthesis in Quercus robur leaves. Eur J Plant Pathol 125, 63–72 (2009). https://doi.org/10.1007/s10658-009-9458-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-009-9458-7

Keywords

Navigation