Skip to main content
Log in

Antifungal activity of Datura stramonium, Calotropis gigantea and Azadirachta indica against Fusarium mangiferae and floral malformation in mango

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Floral malformation caused by Fusarium mangiferae is a serious threat to mango cultivation in various countries. Different long-term measures suggested to control it were found to be unsuccessful. Present studies clearly showed strong antifungal activity of a concoction brewed from Datura stramonium, Calotropis gigantea, Azadirachta indica (neem) and cow manure (T1) followed by methanol-water (70/30 v/v) extracts of Datura stramonium, Calotropis gigantea and Azadirachta indica (T2) against Fusarium mangiferae. Optimal control of floral malformation was found in trees sprayed with T1 followed by T2 at bud break stage and again at fruit set stage when compared with the control. All the malformed buds or panicles completely dried two days after foliar spray with T1 or T2. In the trees treated with T1 at fruit set stage, flower abscission was observed from the fourth day after spraying and all flowers dropped by the ninth day without requiring any manual de-blossoming, whereas in the control, the malformed panicles remained green and competed with the growing fruits for plant nutrients. In vitro culture of fresh malformed tissues in MS media along with T1 or T2 showed no growth of any fungus in the media. However, in vitro culture of the completely dry malformed tissues in MS media after foliar treatment with T1 or T2 revealed growth of F. mangiferae on the twenty fifth day indicating that the concoction-brewed compost (T1) or methanol-water (70/30 v/v) extracts (T2) could not completely eliminate the pathogen but helped in controlling malformation by suppressing the activity of F. mangiferae. Mango trees sprayed with T1 and T2 revealed significant differences in percent fruit set and retention when compared with the control. This could be due to observed higher levels of nitrogen, phosphorus, potassium, calcium, magnesium, copper, zinc, iron and manganese in T1, followed by T2 when compared with T3 (control). Among the different fruit quality parameters analysed, the total flavonoids were found to be significantly higher in T1 and T2 when compared with T3. The study proved that the concoction-brewed compost (T1) is effective, inexpensive, easy to prepare and constitutes a sustainable and eco-friendly approach to control floral malformation in mango when it is sprayed at bud break stage and again at fruit set stage. In this present study, exogenous treatment of emerging buds with (Tc) further proved that with increase in the number of malformed panicles/tree the number of buds developing into healthy panicles/tree decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albrecht, J. A. (1993). Ascorbic acid and retention in lettuce. Journal of Food Quality, 16, 311–316.

    Article  CAS  Google Scholar 

  • Britz, H., Steenkamp, E. T., Coutinho, T. A., Wingfield, B. D., Marasas, W. F. O., & Wingfield, M. J. (2002). Two new species of Fusarium section Liseola associated with mango malformation. Mycologia, 94, 722–730.

    Article  Google Scholar 

  • Bruckner, B., & Blechschmidt, D. (1991). The gibberellin fermentation. Critical Reviews of Biotechnology, 11, 1163–1192.

    Google Scholar 

  • Chacko, E. K. (1991). Mango flowering—still an enigma!. Acta Horticulturae (ISHS), 291, 12–12.

    Google Scholar 

  • Chakrabarti, D. K., & Ghosal, S. (1989). The disease cycle of mango malformation induced by Fusarium moniliforme var. subglutinans and the curative effects of mangiferin-metal chelates. Journal of Phytopathology, 125, 238–246.

    Article  CAS  Google Scholar 

  • Chapman, H. D., & Pratt, P. F. (1961). Methods of analysis for soil, plant and water. Division of Agricultural. Sciences. Berkley, U.S.A: University of California.

    Google Scholar 

  • Chunjian, L., & Fritz, B. (2003). Stimulatory effect of cytokinins and interaction with IAA on the release of lateral buds of pea plants from apical dominance. Journal of Plant Physiology, 160, 1059–1063.

    Article  Google Scholar 

  • Cronin, M. J., Yohalem, D. S., Harris, R. F., & Andrews, J. H. (1996). Putative mechanism and dynamics of inhibition of the apple scab pathogen Venturia inaequalis by compost extracts. Soil Biology and Biochemistry, 28, 1241–1249.

    Article  CAS  Google Scholar 

  • Crookes, C. A., & Rijkenberg, F. H. J. (1985). Isolation of fungi associated with blossom malformation of mangoes. South African Mango Grower’s Association Research Report, 5, 10–14.

    Google Scholar 

  • Darvas, J. M. (1987). Control of mango blossom malformation with trunk injection. South African Mango Grower’s Association Yearbook, 7, 21–24.

    Google Scholar 

  • De, S. (1996). On the morphology and biochemical aspects of starch grains in latex sera of five laticiferous plants. Geobios Jodhpur, 23, 267–268.

    Google Scholar 

  • Duke, J. A. (1985). Hand book of medicinal herbs, Calotropis gigantea, pp. 90–92. Orlando: CRC.

    Google Scholar 

  • Duncan, D. B. (1955). Multiple range and multiple “F”tests. Biometrics, 11, 1–42.

    Article  Google Scholar 

  • Elad, Y., & Shtienberg, D. (1994). Effect of compost water extracts on grey mould (Botrytis cinerea). Crop Protection, 13, 109–114.

    Article  Google Scholar 

  • Freeman, S., Maimon, M., & Pinkas, Y. (1999). Use of GUS transformants of Fusarium subglutinans for determining etiology of mango malformation disease. Phytopathology, 89, 456–461.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, S., Klein-Gueta, D., Korolev, N., & Sztejnberg, A. (2004). Epidemiology and survival of Fusarium mangiferae, the causal agent of mango malformation disease. Acta Horticulturae, 645, 487–491.

    Google Scholar 

  • Gupta, J., & Ali, M. (2000). Rare chemical constituents from Calotropis gigantea roots. Indian Journal of Pharmacological Science, 62, 29–32.

    CAS  Google Scholar 

  • Hedden, P., & Graebe, L. E. (1985). Inhibition of gibberellin biosynthesis by paclobutrazol in cell-free homogenates of Cucurbita maxima endosperm and Malus pumila embryos. Journal of Plant Growth Regulation, 4, 111–122.

    Article  CAS  Google Scholar 

  • Hoitink, H. A., Stone, A. G., & Han, D. Y. (1997). Suppression of plant diseases by composts. Hort Science, 32, 184–187.

    Google Scholar 

  • Issac, R. A., & Johnson, W. C. (1976). Determination of total nitrogen in plant tissue. Journal of Association of Official Annals of Chemistry, 59, 98–100.

    Google Scholar 

  • Jackson, M. L. (ed). (1958). Soil chemical analysis. Englewood Cliffs, New Jersey, U.S.A: Prentice-Hall.

    Google Scholar 

  • Jones, J. B., Jr. (Ed.) (1985). A laboratory guide of exercises for conducting soil tests and plant analysis. Athens, U.S.A.: Benton Laboratories.

  • Kartikar, K. R., & Basu, B. D. (1935). Indian medicinal plants. Lolit Mohan Basu, Vol. I–IV. Dehradun, India: International Book Distributor.

    Google Scholar 

  • Kitagawa, I., Ru, S. Z., Jony, D. P., Nam, I. B., Yasuyuki, T., Mayasuki, Y., et al. (1992). Indonesian medicinal plants. I.Chemical structures of calotroposides A and B, Two new oxypregnane-oligoglycosides from the root of Calotropis gigantea (Asclepiadaceae). Chemical Pharmacology Bulletin, 40, 2007–2013.

    CAS  Google Scholar 

  • Kiuchi, F., Fukao, Y., Maruyama, T., Tanaka, M., Saraki, T., Mikage, M., et al. (1998). Cytotoxic principles of a Bangladeshi crude drug, akondmul (roots of Calotropis gigantea). Chemical Pharmacology Bulletin, 46, 528–530.

    CAS  Google Scholar 

  • Kumar, J., & Beniwal, S. P. S. (1992). Mango malformation. In J. Kumar, H. S. Chaube, U. S. Singh & A. N. Mukhopadhyay (Eds.), Plant diseases of international importance. Diseases of fruit crop Vol. III, pp. 357–93. Englewood Cliffs, NJ, USA: Prentice Hall.

    Google Scholar 

  • Kumar, J., Singh, U. S., & Beniwal, S. P. S. (1993). Mango malformation: one hundred years of research. Annual Review of Phytopathology, 31, 217–232.

    Article  Google Scholar 

  • Kulkarni, V. J. (1991). Physiology of flowering in mango studied by grafting. Acta Horticulturae (ISHS), 291, 95–104.

    Google Scholar 

  • Manicom, B. Q. (1989). Blossom malformation of mango. South African Mango Grower’s Association Research Report, 10, 11–12.

    Google Scholar 

  • Marasas, W. F. O., Ploetz, R. C., Wingfield, M. J., Wingfield, B. D., & Steenkamp, E. T. (2006). Mango malformation disease and the associated Fusarium species. Phytopathology, 96, 667–672.

    Article  PubMed  CAS  Google Scholar 

  • Mather, J. P., & Roberts, P. E. (1998). Introduction to cell and tissue culture: Theory and technique. New York and London: Plenum.

    Google Scholar 

  • Matsuoka, M. (2003). Gibberellins signaling: how do plant cells respond to GA signals? Journal of Plant Growth Regulation, 22, 123–125.

    Article  CAS  Google Scholar 

  • Mazza, G., Fukumoto, L., Delaquis, P., Girard, B., & Ewert, B. (1999). Anthocyanins, phenolics, and color of Cabernet Franc, Merlot, and Pinot Noir wines from British Columbia. Journal of Agricultural Food Chemistry, 47, 4009–4017.

    Article  CAS  Google Scholar 

  • Nelson, P. E., Tousson, T. A., & Marasas, W. F. O. (1983). Fusarium species: An illustrated manual for identification, p. 123. University Park, USA: The Pennsylvania State University Press.

    Google Scholar 

  • O’Donnell, K., Cigelnik, E., & Nirenberg, H. I. (1998). Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia, 90, 465–493.

    Article  Google Scholar 

  • O’Donnell, K., Nirenberg, H. I., Aoki, T., & Cigelnik, E. (2000). A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience, 41, 61–78.

    Article  Google Scholar 

  • Pal, G., & Sinha, N. K. (1980). Isolation, crystallization and properties of calotropins D1 and D2 from Calotropis gigantea. Archives of Biochemistry and Biophysics, 202, 321–329.

    Article  PubMed  CAS  Google Scholar 

  • Ploetz, R. C. (2001). Malformation: A unique and important disease of mango, Mangifera indica L. In B. A. Summerell, J. F. Leslie, D. Backhouse, W. L. Bryden & L. W. Burgess (Eds.), Fusarium: Paul E. Nelson memorial symposium, pp. 233–247. St. Paul, MN: The American Phytopathological Society.

    Google Scholar 

  • Ploetz, R. C., & Gregory, N. (1993). Mango malformation in Florida: distribution of Fusarium subglutinans in affected trees, and relationships among strains within and among different orchards. Acta Horticulturae, 34, 388–394.

    Google Scholar 

  • Ploetz, R., Zheng, Q. I., Vazquez, A., & Abdel, S. M. A. (2002). Current status and impact of mango malformation in Egypt. International Journal of Pest Management, 48, 279–285.

    Article  CAS  Google Scholar 

  • Quinlan, J. D. (1981). New chemical approaches to the control of fruit tree form and size. Acta. Horticulturae, 120, 95–106.

    Google Scholar 

  • Rahman, M. A., & Wilcock, C. C. (1991). A report on flavonoid investigation in some Bangladesh Asclepiads, Bangladesh. Journal of Botany, 20, 175–178.

    Google Scholar 

  • Ram, S. (1999). Hormonal physiology of flowering in ‘Dashehari’ mango. Journal of Applied Horticulture, 1, 84–88.

    Google Scholar 

  • Ranganna, S. (1986). Hand book of analyses and quality control for fruits and vegetable products. New Delhi: McGraw Hill.

    Google Scholar 

  • Richards, D. E., King, K. E., Ait-ali, T., & Harber, N. P. (2001). How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annual Review of Plant Physiology & Plant Molecular Biology, 52, 67–88.

    Article  CAS  Google Scholar 

  • Rybakov, Y. A., & Bourd, G. I. (1991). Nitrogen regulation of gibberellin biosynthesis enzyme complex in Fusarium moniliforme. Journal of Biotechnology, 21, 219–228.

    Article  CAS  Google Scholar 

  • Saeed, A., & Schlosser, E. (1972). Effect of some cultural practices on the incidence of mango malformation. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 79, 349–51.

    Google Scholar 

  • Scheuerell, S., & Mahaffee, W. (2002). Compost Tea: principles and prospects for plant disease control. Compost Science and Utilization, 10, 313–338.

    Google Scholar 

  • Schmulling, T. (2002). New insights into the functions of cytokinins in plant development. Journal of Plant Growth Regulation, 21, 40–49.

    Article  PubMed  CAS  Google Scholar 

  • Sen, S., & Sahu, N. P. (1992). Flavonol glycosides from Calotropis gigantea. Phytochemistry, 31, 2919–2921.

    Article  PubMed  CAS  Google Scholar 

  • Shibuya, H., & Zhang, R. S. (1992). Indonesian medicinal plants: V. Chemical structures of calotroposides C, D, E, F, and G: five additional new oxypregnane-oligoglycosides from the root of Calotropis gigantea (Asclepiadaceae). Chemical Pharmacological Bulletin, Tokyo, 40, 2647–2653.

    CAS  Google Scholar 

  • Shü, Z. H. (1999). Effects of temperature on the flowering biology and fertilization of mangoes (Mangifera indica L.). Journal of Applied Horticulture, 1, 149–150.

    Google Scholar 

  • Singh, S. (2003). Effects of aqueous extract of neem seed kernel and azadirachtin on the fecundity, fertility and post-embryonic development of the melonfly, Bactrocera cucurbitae and the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Journal of Applied Entomology, 127, 540–547.

    Article  Google Scholar 

  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.

    CAS  Google Scholar 

  • Steenkamp, E. T., Wingfield, B. D., Coutinho, T. A., Wingfield, M. J., & Marasas, W. F. O. (1999). Differentiation of Fusarium subglutinans f.sp. pini by histone gene sequence data. Applied Environmental Microbiology, 65, 3401–3406.

    CAS  Google Scholar 

  • Steenkamp, E. T., Britz, H., Coutinho, T. A., Wingfield, B. D., Marasas, W. F. O., Wingfield, B. D., et al. (2000). Molecular characterization of Fusarium subglutinans associated with mango malformation. Molecular Plant Pathology, 1, 187–193.

    Article  CAS  Google Scholar 

  • Stindt, A., & Weltzien, H. C. (1988). Der Einsatz von kompostextrakten zur bekampfun von Botrytis cinerea an erdbeeren ergebnisse des versuchsjahres. Gesunde Pflanzen, 40, 451–454.

    Google Scholar 

  • Summonwar, A. S., Ray Chaudhury, S. P., & Pathak, S. P. (1966). Association of fungus, Fusarium moniliforme Scheld. with malfunction in mango (Mangifera indica L.). Indian Journal of Phytopathology, 19, 227–228.

    Google Scholar 

  • Thom, M., & Moller, S. (1988). Untersuchungen zur wirksamkeit wasseriger Kompostextrakte gegnuber edem erreger des echten mehltaus an gurken. Thesis. Gesamthochschule Kassel.

  • Usha, K. (2005). Studies on mango malformation. New Delhi: Indian Agricultural Research Institute, Annual Report.

    Google Scholar 

  • Usha, K., & Singh, B. (2000). Fusicoccin as an inducer of mango malformation. Journal of Plant Biology (India), 27, 313–315.

    Google Scholar 

  • Usha, K., Gambhir, P. N., Sharma, H. C., Goswami, A. M., & Singh, B. (1994). Relationship of molecular mobility of water with floral malformation in mango as assessed by NMR. Scientia Horticulturae, 59, 291–295.

    Article  Google Scholar 

  • Usha, K., Goswami, A. M., Sharma, H. C., Pande, P. C., & Singh, B. (1997). Scanning electron microscopic studies on floral malformation in mango. Scientia Horticulturae, 71, 127–130.

    Article  Google Scholar 

  • Varma, A., Lele, V. C., Raychoudhuri, S. P., Ram, A., & Sang, A. (1974). Mango malformation: a fungal disease. Phytopathologische Zeitschrift, 79, 254–257.

    Article  Google Scholar 

  • Weltzein, H. C. (1991). Biocontrol of foliar fungal diseases with compost extracts. In H. J. Andrews & S. H. Susan (Eds.), Microbial ecology of leaves, pp. 430–450. New York, NY: Springer-Verlag.

    Google Scholar 

  • Weltzien, H. C., & Ketterer, N. (1986). Control of downy mildew, Plasmopara viticola (de Bary) Berlese et de Toni, on grapevine leaves through water extracts from composted organic wastes. Journal of Phytopathology, 116, 186–188.

    Article  Google Scholar 

  • Youssaf, S. A., Maymon, M., Zveibil, A., KleinGueta, D., Sztejnberg, A., Shalaby, A., & Freeman, S. (2006). Epidemiological aspects of mango malformation disease caused by Fusarium mangiferae and source of infection in seedlings cultivated in orchards in Egypt. Plant Pathology. doi:10.1111/j,1365-3059.2006.01548.x

  • Zafar, I., Mehboob-ur-Rahman, Altaf, A. D., Ahmad, S., & Yusuf, Z. (2006). RAPD analysis of Fusarium isolates causing “Mango Malformation” disease in Pakistan. World Journal of Microbiology and Biotechnology, 22, 1161–1167.

  • Zeevaart, J. A. D., Gage, D. A., & Taton, M. (1993). Gibberellin A1 is required for stem elongation in spinach under long-day conditions. Proceedings of the National Academy of Science, USA, 90, 7401–7405.

    Article  CAS  Google Scholar 

  • Zheng, Q., & Ploetz, R. C. (2002). Genetic diversity in the mango malformation pathogen and development of a PCR assay. Plant Pathology, 51, 208–16.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Usha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usha, K., Singh, B., Praseetha, P. et al. Antifungal activity of Datura stramonium, Calotropis gigantea and Azadirachta indica against Fusarium mangiferae and floral malformation in mango. Eur J Plant Pathol 124, 637–657 (2009). https://doi.org/10.1007/s10658-009-9450-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-009-9450-2

Keywords

Navigation