Skip to main content

Advertisement

Log in

Identification of groundwater nitrate sources in an urban aquifer (Alborz Province, Iran) using a multi-parameter approach

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

High concentrations of NO3̄ in water resources are detrimental to both human health and aquatic ecosystems. Identification of NO3̄ sources and biogeochemical processes is a crucial step in managing and controlling NO3̄ pollution. In this study, land use, hydrochemical data, dual stable isotopic ratios and Bayesian Stable Isotope Mixing Models (BSIMM) were integrated to identify NO3̄ sources and estimate their proportional contributions to the contamination of the Karaj Urban Aquifer (Iran). Elevated NO3̄ concentrations indicated a severe NO3̄ pollution, with 39 and 52% of groundwater (GW) samples displaying the concentrations of NO3̄ in exceedance of the World Health Organization (WHO) standard of 50 mg NO3̄ L−1 in the rainy and dry seasons, respectively. Dual stable isotopes inferred that urban sewage is the main NO3̄ source in the Karaj Plain. The diagram of NO3̄/Cl‾ versus Cl‾ confirmed that municipal sewage is the major source of NO3̄. Results also showed that biogeochemical nitrogen dynamics are mainly influenced by nitrification, while denitrification is minimal. The BSIMM model suggested that NO3̄ originated predominantly from urban sewage (78.2%), followed by soil organic nitrogen (12.2%), and chemical fertilizer (9.5%) in the dry season. In the wet season, the relative contributions of urban sewage, soil nitrogen and chemical fertilizer were 87.5, 6.7, and 5.5%, respectively. The sensitivity analysis for the BSIMM modeling indicates that the isotopic signatures of sewage had the major impact on the overall GW NO3̄ source apportionment. The findings provide important insights for local authorities to support effective and sustainable GW resources management in the Karaj Urban Aquifer. It also demonstrates that employing Bayesian models combined with multi-parameters can improve the accuracy of NO3̄ source identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adeowale, T., Surapaneni, A., Faulkner, D., McCance, W., Wang, S., & Currell, M. (2019). Delineation of contaminant sources and denitrification using isotopes of nitrate near a wastewater treatment plant in peri-urban settings. Science of the Total Environment, 651, 2701–2711. https://doi.org/10.1016/j.scitotenv.2018.10.146

    Article  ADS  CAS  Google Scholar 

  • Adiyanti, S., Maruya, Y., Eyre, B. D., Mangion, P., Turner, J. V., & Hipsey, M. R. (2022). Using inverse modelling and dual isotope (δ15N and δ18O of NO3) to determine sources of nitrogen export from a complex land use catchment. Water Resources Research. https://doi.org/10.1029/2022WR031944

    Article  Google Scholar 

  • Alborz Meteorological Organization, November 2021 to October 2022. Annual report of Alborz Meteorological Organization. http://alborzmet.ir

  • Anderson, K. K., & Hooper, A. B. (1983). O2 and H2O are each the source of one O in NO2 produced from NH3 by Nitrosomonas: 15N evidence. FEBS Letter, 164, 236–240.

    Article  Google Scholar 

  • APHA/AWWA/WEF. (2017). Standard Methods for the examination of water and wastewater. 23rd edition. America Public Health Association, American Water Works Association and Water Environment Federation, Washington, DC

  • Baggs, E. M., & Philippot, L. (2010). Microbial terrestrial pathways to N2O. In K. A. Smith (Ed.), Nitrous Oxide and Climate Change (pp. 4–35). Earthscan Publications.

    Google Scholar 

  • Biddau, R., Cidu, R., Pelo, S. D., Carletti, A., Ghiglieri, G., & Pittalis, D. (2019). Source and fate of nitrate in contaminated groundwater systems: Assessing spatial and temporal variations by hydrogeochemistry and multiple stable isotope tools. Science of the Total Environment, 647, 1121–1136. https://doi.org/10.1016/j.scitotenv.2018.08.007

    Article  ADS  CAS  PubMed  Google Scholar 

  • Chen, X., Jiang, C., Zheng, L., Dong, X., Chen, Y., & Li, C. (2020). Identification of nitrate sources and transformations in basin using dual isotopes and hydrochemistry combined with a Bayesian mixing model: Application in a typical mining city. Environmental Pollution, 267, 115651. https://doi.org/10.1016/j.envpol.2020.115651

    Article  CAS  PubMed  Google Scholar 

  • Chitsazan, M., Rezapour, M. M., & Eilbeigi, M. (2017). Analysis of temporal and spatial variations in groundwater nitrate and development of its pollution plume: A case study in Karaj aquifer. Environmental Earth Sciences. https://doi.org/10.1007/s12665-017-6677-7

    Article  Google Scholar 

  • Daneshian, H., Kalantari, N., & Alijani, F. (2021). Hydrochemistry and stable isotopes characteristics of groundwater in an urban aquifer, southwest of Iran. Geoperisa, 11(1), 81–100. https://doi.org/10.22059/GEOPE.2020.294287.648520

    Article  Google Scholar 

  • Davami, P. (2019). Report on the production and consumption of chemical fertilizers in Iran and the world. Agricultural support services co. of Alborz province. https://www.assc.ir/fa/article/11018-.html

  • Davidson, E. A., David, M. B., Galloway, J. N., Goodale, C. L., Haeuber, R., Harrison, J. A., Howarth, R. W., Jaynes, D. B., Lowrance, R. R., Nolan, B. T., Pinder, R. W., Porter, E., Snyder, C. S., Townsend, A. R., & Ward, M. N. (2011). Excess nitrogen in the U.S. Environment: trends, risks, and solutions. Issues in Ecology, 15, 1–16.

    Google Scholar 

  • Deutsch, B., Mewes, M., Liskow, I., & Voss, M. (2006). Quantification of diffuse nitrate inputs into a small river system using stable isotopes of oxygen and nitrogen in nitrate. Organic Chemistry, 37, 1333–1342. https://doi.org/10.1016/j.orggeochem.2006.04.012

    Article  ADS  CAS  Google Scholar 

  • Erostate, M., Huneau, F., Garel, E., Lehmann, M. F., Kuhn, T., Aquilina, L., Vergnaud-Ayraud, V., Labasque, T., Santoni, T., Robert, S., Provitolo, D., & Pasqualini, V. (2018). Delayed nitrate dispersion within a coastal aquifer provides constraints on land-use evolution and nitrate contamination in the past. Science of the Total Environment, 644, 928–940. https://doi.org/10.1016/j.scitotenv.2018.06.375

    Article  ADS  CAS  PubMed  Google Scholar 

  • Fadhullah, W., Yaccob, N. S., Syakir, M. I., Muhammad, S. A., Yue, F. J., & Li, S. L. (2020). Nitrate sources and processes in the surface water of a tropical reservoir by stable isotopes and mixing model. Science of the Total Environment, 700, 134517. https://doi.org/10.1016/j.scitotenv

    Article  ADS  CAS  PubMed  Google Scholar 

  • Fan, A. M., & Steinberg, V. E. (1996). Health implications of nitrate and nitrate in drinking water: An update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regulatory Toxicology and Pharmacology, 23, 35–43.

    Article  CAS  PubMed  Google Scholar 

  • Geological survey of Iran. (1984). Geological map of SAVEH sheet. Scale, 1:250000. https://www.ngdir.ir/contents/558

  • Geological survey of Iran. (1986). Geological map of TEHRAN sheet. Scale, 1:250000. https://www.ngdir.ir/contents/455

  • Ghorbaniyan, A., Khalilzadeh, M., Noori, M. (2014). Investigating the concentration of nitrate ions and the causes of its increase in the aquifer of Eshtehard plain. 5th National conference of water resources management. Tehran. Iran. https://civilica.com/doc/269320.

  • Gómez-Alday, J., Hussein, S., Arman, H., Alshamsi, D., Murad, A., Elhaj, K., & Aldahan, A. (2022). A multi-isotopic evaluation of groundwater in a rapidly developing area and implications for water management in hyper-arid regions. Science of the Total Environment, 805, 150245. https://doi.org/10.1016/j.scitotenv.2021.150245

    Article  ADS  CAS  PubMed  Google Scholar 

  • Harris, S. J., Cendon, D. I., Hankin, S. I., Peterson, M. A., Xiao, S., & Kelly, B. F. J. (2022). Isotopic evidence for nitrate sources and controls on denitrification in groundwater beneath an irrigated agricultural district. Science of the Total Environment, 817, 152606. https://doi.org/10.1016/j.scitotenv.2021.152606

    Article  ADS  CAS  PubMed  Google Scholar 

  • Herms, I., Jodár, J., Soler, A., Lambán, L. J., Custodio, E., Nûñez, J. A., et al. (2021). Identification of natural and anthropogenic geochemical processes determining the groundwater quality in port del comte High Mountain karst aquifer (SE, Pyrenees). Water, 13, 2891. https://doi.org/10.3390/w13202891.

    Article  CAS  Google Scholar 

  • Heydarizad, M., Raeisi, E., Sorí, R., & Gimeno, L. (2019). Developing meteoric water lines for Iran based on air masses and moisture sources. Water, 11, 2359. https://doi.org/10.3390/w11112359

    Article  CAS  Google Scholar 

  • Hosono, T., Tokunaga, T., Kagabu, M., Nakata, H., Orishikida, T., Lin, I. T., & Shimada, J. (2013). The use of δ15N and δ18O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution. Water Research, 47, 2661–2675. https://doi.org/10.1016/j.watres.2013.02.020

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Jin, M., Ma, B., Liang, X., Cao, M., Zhang, J., Zhang, Z., & Su, J. (2022). Identifying nitrate sources and transformation in groundwater in a large subtropical basin under a framework of groundwater flow systems. Journal Hydrology, 610, 127943. https://doi.org/10.1016/j.jhydrol.2022.127943

    Article  CAS  Google Scholar 

  • Ji, X., Xie, R., Hao, Y., & Lu, J. (2017). Quantitative identification of nitrate pollution sources and uncertainty analysis based on dual isotope approach in an agricultural watershed. Environmental Pollution, 229, 586–594. https://doi.org/10.1016/j.envpol.2017.06.100

    Article  CAS  PubMed  Google Scholar 

  • Ji, X., Shu, L., Li, J., Zhao, C., Chen, W., Chen, Z., Shang, X., Dahlgren, R. A., Yang, Y., & Zhang, M. (2022a). Tracing nitrate sources and transformations using δ17O, δ15N, and δ18O-NO3̄ in a coastal plain river network of eastern China. Journal of Hydrology, 610, 127829. https://doi.org/10.1016/j.jhydrol.2022.127829

    Article  CAS  Google Scholar 

  • Ji, X., Shu, L., Chen, W., Chen, Z., Shang, X., Yang, Y., Dahlgren, R. A., & Zhang, M. (2022b). Nitrate pollution source apportionment, uncertainty and sensitivity analysis across a rural-urban river network based on δ15N/δ18O-NO3̄ isotopes and SIAR modeling. Journal of Hazardous Materials, 438, 129480. https://doi.org/10.1016/j.jhazmat.2022.129480

    Article  CAS  PubMed  Google Scholar 

  • Kamyabgostar Jonub Consulting Engineers Co. (2018). Report of determining the qualitative capture zone of groundwater resources of Tehran-Karaj plain (in the geographical area of Alborz province). Available in archives of Regional Water of Alborz province. Iran.

  • Kaown, D., Kho, D.-C., Mayer, B., Mahlknecht, J., Ju, Y., Rhee, S.-K., Kim, J.-H., Park, D. K., Park, I., Lee, H.-L., Yoon, Y.-Y., & Lee, K.-K. (2023). Estimation of nutrient sources and fate in groundwater near a large weir-regulated river using multiple isotopes and microbial signatures. Journal of Hazardous Materials, 446, 130703. https://doi.org/10.1016/j.jhazmat.2022.130703

    Article  CAS  PubMed  Google Scholar 

  • Kendall, C. (1998). Tracing nitrogen sources and cycling in catchments. In: Kendall, C., McoDonnell, J.H. (Eds), Isotope Tracers in Catchment Hydrology. Elsevier, Amsterdam.

  • Kendall, C., Eelliot, E. M., & Wankel, S. D. (2007). Tracing anthropogenic inputs of nitrogen to ecosystems, chapter 12. In R. H. Michener & K. Lajtha (Eds.), Stable Isotopes in Ecology and Environmental Science (2ed ed., pp. 375–449). Blackwell Publishing.

    Chapter  Google Scholar 

  • Kou, X., Ding, J., Li, Y., Li, Q., Mao, L., Xu, C., Zheng, Q., & Zhuang, S. (2021). Tracing nitrate sources in the groundwater of an intensive agricultural region. Agriculture Water Management, 250, 106826. https://doi.org/10.1016/j.agwat.2021.106826

    Article  Google Scholar 

  • Li, S., Jiang, H., Xu, Z., & Zhang, Q. (2022). Backgrounds as a potentially important component of riverine nitrate loads. Science of the Total Environment, 838, 155999.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Majumdar, D., & Gupta, N. (2000). Nitrate pollution of groundwater and associated human health disorders. Indian Journal of Environmental Health, 42(I), 28–39.

    CAS  Google Scholar 

  • Matiatos, I. (2016). Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece). Science of the Total Environment, 541, 802–814. https://doi.org/10.1016/j.scitotenv.2015.09.134

    Article  ADS  CAS  PubMed  Google Scholar 

  • Mayer, B., Boyer, B. W., Goodale, C., Jaworski, N. A., Breemen, N. V., Howarth, R. W., et al. (2002). Source of nitrate in rivers draining sixteen watersheds in the northeastern U.S. isotopic constraint. Biogeochemistry, 57, 171–197. https://doi.org/10.1023/A:1015744002496

    Article  Google Scholar 

  • McDonald, J. H. (2014). Handbook of Biological Statistics (3rd ed.). Sparky House Publishing.

    Google Scholar 

  • Meghdadi, A., & Javar, N. (2018). Quantification of spatial and seasonal variations in the proportional contribution of nitrate sources using a multi-isotope approach and Bayesian isotope mixing model. Environmental Pollution, 235, 207–222. https://doi.org/10.1016/j.envpol.2017.12.078

    Article  CAS  PubMed  Google Scholar 

  • Minet, E. P., Goodhue, R., Meier-Augenstein, W., Kalin, R. M., Fenton, O., Richards, K. G., & Coxon, C. E. (2017). Combining stable isotopes with contamination indicators: A method for improved investigation of nitrate sources and dynamics in aquifers with mixed nitrogen inputs. Water Research, 124, 85–96. https://doi.org/10.1016/j.watres.2017.07.041

    Article  CAS  PubMed  Google Scholar 

  • Mook, W. G., De Vries, J. J. (2000). Environmental isotope in the hydrological cycle, principle and application. Theory, Methods, Review. 1 Accessible at: Environmental isotopes in the hydrological cycle: Principles and applications. Hydrology.nl.

  • Mosaffa, M., Saleh, F. N., Amirhossseini, Y. K. (2015). Comparison of relationship between the concentrations of water isotope in precipitation in the cities of Tehran (Iran) and New Delhi (India). Management of Natural Resources in a changing Environment. Springer, Cham, pp. 29–38. DOI: 10.1007%2F978-3-319-12559-2.

  • Nejatijahromi, Z., Nassery, H. R., Hosono, T., Nakhaei, M., Alijani, F., & Okumura, A. (2019). Groundwater nitrate contamination in an area using urban wastewaters for agricultural irrigation under arid climate condition, southeast of Tehran, Iran. Agriculture Water Management, 221, 397–414. https://doi.org/10.1016/j.agwat.2019.04.015

    Article  Google Scholar 

  • Nikolenko, O., Jurado, A., Borges, A. V., Knöller, K., & Brouyére, S. (2017). Isotopic composition of nitrogen species in groundwater under agricultural areas: A review. Science of the Total Environment, 621, 1415–1432. https://doi.org/10.1016/j.scitotenv.2017.10.086

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ogrinc, N., Tamše, S., Zavadlav, S., Vrzel, J., & Jin, L. (2019). Evaluation of geochemical processes and nitrate pollution sources at the Ljubljansko polje aquifer (Slovenia): A stable isotope perspective. Science of the Total Environment, 646, 1588–1600. https://doi.org/10.1016/j.scitotenv.2018.07.245

    Article  ADS  CAS  PubMed  Google Scholar 

  • Panno, S. V., Hackley, K. C., Kelly, W. R., & Hwang, H. H. (2006). Isotopic evidence of nitrate sources and denitrification in the Mississippi River, Illinois. Journal of Environmental Quality, 35(2), 495–504. https://doi.org/10.2134/jeq2005.0012

    Article  CAS  PubMed  Google Scholar 

  • Parnell, A. C., & Inger, R. (2016). A stable isotope mixing model. R package version 0.4.1.

  • Parnell, A. C., Phillips, D. L., Bearhop, S., Semmens, B. X., Ward, E. J., Moore, J. W., Jackson, A. L., Grey, J., Kelly, D. J., & Inger, R. (2013). Bayesian stable isotope mixing models. Environmentrics. https://doi.org/10.1002/env.2221

  • Pastén-Zapata, E., Ledesma-Ruiz, R., Harter, T., Ramirez, A. I., & Mahlknecht, J. (2014). Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach. Science of the Total Environment, 470(471), 855–864. https://doi.org/10.1016/j.scitotenv.2013.10.043

    Article  ADS  CAS  PubMed  Google Scholar 

  • Phillips, D., & Koch, P. L. (2002). Incorporating concentration dependence in stable isotope mixing models. Oecologica, 130, 114–125. https://doi.org/10.1007/s004420100786

    Article  ADS  Google Scholar 

  • Popescu, R., Mimmo, T., Dinca, O. R., Capici, C., Costinel, D., Sandru, C., Ionete, R. E., Stefanescu, I., & Axente, D. (2015). Using stable isotopes in tracing contaminant sources in an industrial area: A case study on the hydrological basin of the Olt River, Romania. Science of the Total Environment, 533, 17–23. https://doi.org/10.1016/j.scitotenv.2015.06.078

    Article  ADS  CAS  PubMed  Google Scholar 

  • Qin, Y., Zhang, D., & Wang, F. (2018). Using nitrogen and oxygen isotopes to access sources and transformations of nitrogen in the Qinhe Basin, North China. Environmental Science and Pollution Research, 26, 738–748. https://doi.org/10.1007/s11356-018-3660-0

    Article  CAS  PubMed  Google Scholar 

  • Romanelli, A., Soto, D. X., Matiatos, I., Martínez, D. E., & Esquius, S. (2020). A biological and nitrate isotopic assessment framework to understand eutrophication in aquatic ecosystems. Science of the Total Environment, 715, 136909. https://doi.org/10.1016/j.scitotenv.2020.136909

    Article  ADS  CAS  PubMed  Google Scholar 

  • Rozanski, K., Araguas-Araguas, L., Gofiantini, R. (1993). Isotopic patterns in modern global precipitation, in climate change in continental isotope records. Geophys. Monogr. Ser. 78.

  • Sentinel 2 satellite image. (2021). S2B_MSIL2A_20210726T071619_N0301_R006_T39SWV_20210726T085821.

  • Shu, W., Wang, P., Zhao, J., Ding, M., Zhang, H., Nie, M., & Huang, G. (2022). Source and migration similarly determine nitrate concentrations: Integrating isotopic, landscape, and biological approaches. Science of the Total Environment, 852, 158216. https://doi.org/10.1016/j.scitotenv.2022.158216

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sigler, W. A., Ewing, S. A., Wankel, S. D., Jones, C. A., Leuthold, S., Brookshire, E. N. J., & Payn, R. A. (2022). Isotopic signals in an agricultural watershed suggest denitrification is locally intensive in riparian areas but extensive in upland soils. Biogeochemistry, 158, 251–268. https://doi.org/10.1007/s10533-022-00898-9

    Article  CAS  Google Scholar 

  • Soil Survey Staff, (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition, Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. https://www.nrcs.usda.gov/sites/default/files/2022-06/Soil%20Taxonomy.pdf

  • Soto, D. X., Koehler, G., Wassenaar, L. I., & Hobson, K. A. (2019). Spatio-temporal variation of nitrate sources to Lake Winnipeg using N and O isotope (δ15N and δ18O) analyses. Science of the Total Environment, 647, 486–493. https://doi.org/10.1016/j.scitotenv.2018.07.346

    Article  ADS  CAS  PubMed  Google Scholar 

  • Stumm, W., Morgan, J.J. (2012). Aquatic chemistry: Chemical equilibria and rates in natural water. Vol 126. John Wiley & Sons.

  • Suchy, M., Wassenaar, L. I., Graham, G., & Zebarth, B. (2018). High-frequency of NO3¯ isotope (δ15N and δ18O)pattern in groundwater recharge reveal that short-term changes in land use and precipitation influence nitratecontamination trends. Hydrology and Earth System Sciences, 22, 4267–4279. https://doi.org/10.5194/hess-22-4267-2018.

    Article  ADS  CAS  Google Scholar 

  • Torres-Martínez, J. A., Mora, A., Knappett, P. S. K., Ornelas-Soto, N., & Mahlknecht, J. (2020). Tracking nitrate and sulfate source in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model. Water Research, 182, 115962. https://doi.org/10.1016/j.watres.2020.115962

    Article  CAS  PubMed  Google Scholar 

  • Torres-Mrtínez, J. A., Mora, A., Mahlknecht, J., & Kaown, D. (2021). Determining nitrate and sulfate pollution sources and transformations in a coastal aquifer impacted by seawater intrusion-A multi-isotopic approach combined with self-organized maps and a Bayesian mixing model. Journal of Hazardous Materials, 417, 126103. https://doi.org/10.1016/j.jhazmat.2021.126103

    Article  CAS  Google Scholar 

  • Utom, A. U., Werban, U., Levan, C., Muller, C., Knoller, K., Vogt, C., & Dietrich, P. (2020). Groundwater nitrification and denitrification are not always strictly aerobic and anaerobic processes, respectively: an assessment of dual-nitrate isotopic and chemical evidence in a stratified alluvial aquifer. Biogeochemistry, 147, 211–223. https://doi.org/10.1007/s10533-020-00637-y

    Article  CAS  Google Scholar 

  • Voss, M., Deutsh, B., Elmgren, R., Humborg, C., Kuuppo, P., Pastuszak, M., Roff, C., & Schulte, U. (2006). Source identification of nitrate by means of isotopic tracers in the Baltic Sea catchments. Biogeosciences, 3, 663–676. https://doi.org/10.5194/bg-3-663-2006

    Article  ADS  CAS  Google Scholar 

  • Wang, B., Yang, X., Li, S.-L., Liang, X., Li, X.-D., Wang, F., Yang, M., & Liu, C.-Q. (2022a). Anthropogenic regulation governs nutrient cycling and biological succession in hydropower reservoirs. Science of the Total Environment, 834, 155392. https://doi.org/10.1016/j.scitotenv.2022.155392

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wang, H., Yan, Z., Ju, X., Song, X., Zhang, J., Li, S., & Zhu-Barker, X. (2022b). Quantifying nitrous oxide production rates from nitrification and denitrification under various moisture conditions in agricultural soils: Laboratory study and literature synthesis. Frontier in Microbiology, 13, 1110151. https://doi.org/10.3389/fmicb.2022.1110151

    Article  Google Scholar 

  • Wang, W., Yu, Z., Song, X., Chi, L., Wu, Z., & Yuan, Y. (2023). Nitrate dynamics and source apportionment on the East China Sea shelf revealed by nitrate stable isotopes and a Bayesian mixing model. Science of the Total Environment, 869, 161762. https://doi.org/10.1016/j.scitotenv.2023.161762

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ward, M.H., deKok, and Levallois, P. (2005). Workgroup report: drinking-water nitrate and health-recent findings and research needs. Environmental Health Perspective, 113, 1607–1614. https://doi.org/10.1289/ehp.8043

  • Xin, J., Liu, Y., Chen, F., Duan, Y., Wei, G., Zheng, X., & Li, M. (2019). The missing nitrogen pieces: a critical review on the on the distribution, transformation, and budget of nitrogen in the vadose zone-groundwater system. Water Research. https://doi.org/10.1016/j.watres.2019.114977

    Article  PubMed  Google Scholar 

  • Xue, D., Bottle, J., Baets, B., Accoe, F., Nestler, A., Taylor, P., Cleemput, O., Berglund, M., & Boeckx, P. (2009). Present limitations and future prospects of stable isotopes methods for nitrate source identification in surface and groundwater. Water Research, 43, 1159–1170.

    Article  CAS  PubMed  Google Scholar 

  • Xue, D., De Baets, B., Van Cleemput, O., Hennessy, C., Berglund, M., & Boeckx, P. (2012). Use of a Bayesian isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface water. Environmental Pollution, 161, 43–49. https://doi.org/10.1016/j.envpol.2011.09.033

    Article  CAS  PubMed  Google Scholar 

  • Yang, P., Wang, Y., Wu, X., Chang, L., Ham, B., Song, L., & Groves, C. (2020). Nitrate sources and biogeochemical processes in karst underground river impacted by different anthropogenic input characteristics. Environmental Pollution, 265, 114835. https://doi.org/10.1016/j.envpol.2020.114835

    Article  CAS  PubMed  Google Scholar 

  • Ye, H., Tang, C., & Cao, Y. (2021). Sources and transformation mechanisms of inorganic nitrogen: Evidence from multi-isotopes in a rural-urban river area. Science of the Total Environment, 794, 148615. https://doi.org/10.1016/j.scitotenv.2021.148615

    Article  ADS  CAS  PubMed  Google Scholar 

  • Yi, Q., Zhang, Y., Xie, K., Chen, Q., Zheng, F., Tonina, D., Shi, W., & Chen, C. (2020). Tracking nitrogen pollution sources in plain watersheds by combining high-frequency water quality monitoring with tracing dual nitrate isotopes. Journal of Hydrology, 581, 124439.

    Article  CAS  Google Scholar 

  • Yousefi, H., Zahedi, S., Niksokhan, M. H., & Momeni, M. (2019). Ten-year prediction of groundwater level in Karaj plain (Iran) using MODFLOW2005-NWT in MATLAB. Environmental Earth Sciences, 78, 343. https://doi.org/10.1007/s12665-019-8340-y

    Article  ADS  Google Scholar 

  • Yue, F. J., Liu, C. Q., Li, S. L., Zhao, X. L., Ding, H., Liu, B. J., & Zhong, J. (2014). Analysis of δ15N and δ18O to identify nitrate sources and transformations in Songhua River, Northeast China. Journal Hydrology, 519, 329–339. https://doi.org/10.1016/j.jhydrol.2014.07.026

    Article  ADS  CAS  Google Scholar 

  • Zaryab, A., Nassery, H. R., & Alijani, F. (2021). Identifying sources of groundwater salinity and major hydrogeochemical processes in the lower Kabul Basin aquifer, Afghanistan. Environmental Science: Processes and Impacts, 23, 1589–1599. https://doi.org/10.1039/D1EM00262G

    Article  CAS  PubMed  Google Scholar 

  • Zaryab, A., Nassery, H. R., Knoeller, K., Alijani, F., & Minet, E. (2022). Determining nitrate pollution sources in the Kabul Plain aquifer (Afghanistan) using stable isotopes and Bayesian stable isotope mixing model. Science of the Total Environment, 823, 153749. https://doi.org/10.1016/j.scitotenv.2022.153749

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zaryab, A., Farahmand, A., & Mack, T. J. (2023). Identification and apportionment of groundwater nitrate sources in Chakari Plain (Afghanistan). Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-023-01684-8

    Article  PubMed  Google Scholar 

  • Zendehbad, M., Cepuder, P., Loiskandl, W., & Stumpp, C. (2019). Source identification of nitrate contamination in the urban aquifer of Mashhad, Iran. Journal of Hydrology: Regional Studies, 25, 100618. https://doi.org/10.1016/j.ejrh.2019.100618

    Article  Google Scholar 

  • Zhang, M., Zhi, Y., Shi, J., & Wu, L. (2018). Apportionment and uncertainty analysis of nitrate sources based on the dual isotope approach and a Bayesian isotope mixing model at the watershed scale. Science of the Total Environment, 639, 1175–1189. https://doi.org/10.1016/j.scitotenv.2018.05.239

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhang, H., Xu, Y., Cheng, S., Li, Q., & Yu, Q. (2020). Application of the dual-isotope approach and Bayesian isotope mixing model to identify nitrate in groundwater of a multiple land-use area in Chengdu Plain. China. Science of the Total Environment, 717, 137134. https://doi.org/10.1016/jscitotenv.2020.137134

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhang, J., Cao, M., Jin, M., Huang, X., Zhang, Z., & Kang, F. (2022a). Identifying the source and transformation of riverine nitrates in a karst watershed, North China: Comprehensive use of major ions, multiple isotopes and a Bayesian model. Journal of Contaminant Hydrology, 177, 64–75. https://doi.org/10.1016/j.jconhyd.2022.103957

    Article  CAS  Google Scholar 

  • Zhang, Q., Shu, W., Li, F., Li, M., Zhou, J., Tian, C., Liu, S., Ren, F., & Chen, G. (2022b). Nitrate source apportionment and risk assessment: A study in the largest ion-adsorption rare earth mine in China. Environmental Pollution, 302, 119052. https://doi.org/10.1016/j.envpol.2022.119052

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Z., Zhang, M., Chen, Y., Ti, C., Tian, J., He, X., Yu, K., Zhu, W., Yan, X., & Wang, Y. (2022ba). Traceability of nitrate polluted hotspots in plain river networks of the Yangtze River delta, by nitrogen and oxygen isotopes coupling Bayesian model. Environmental Pollution, 315, 120438. https://doi.org/10.1016/j.envpol.2022.120438

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J., Hu, M., Liu, M., Yuan, J., Ni, M., Zhou, Z., & Chen, D. (2022b). Combining the multivariate statistics and dual stable isotopes method for nitrogen source identification in coastal rivers of Hangzhou Bay, China. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-21116-x

    Article  PubMed  Google Scholar 

  • Zhu, A., Chen, J., Gao, L., Shimizu, Y., Liang, D., Yi, M., & Cao, L. (2019). Combined microbial and isotopic signature approach to identify nitrate sources and transformation processes in groundwater. Chemosphere, 228, 721–734. https://doi.org/10.1016/j.chemosphere.2019.04.163

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Alborz Regional Water Authority for providing data about the Karaj alluvial aquifer.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AZ: Conceptualization, Methodology, Investigation, Software, Formal analysis, Writing–original draft, Writing–reviewing & editing, Visualization. FA: Conceptualization, Methodology, Software, Formal analysis, Visualization, Validation, Supervision, Writing–reviewing & editing. KK: Conceptualization, Methodology, Resources, Isotopic analyses, Supervision, Validation, Writing–reviewing & editing. EM: Conceptualization, Methodology, Validation, Writing–reviewing & editing. SFM: Conceptualization, Visualization, Methodology, Software, Writing–reviewing & editing. ZO: Conceptualization, Investigation, Resources, Writing–reviewing & editing.

Corresponding author

Correspondence to Farshad Alijani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 22 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaryab, A., Alijani, F., Knoeller, K. et al. Identification of groundwater nitrate sources in an urban aquifer (Alborz Province, Iran) using a multi-parameter approach. Environ Geochem Health 46, 100 (2024). https://doi.org/10.1007/s10653-024-01872-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-024-01872-0

Keywords

Navigation