Skip to main content

Advertisement

Log in

Cyanotoxins in African waterbodies: occurrence, adverse effects, and potential risk to animal and human health

  • Review
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Public concerns about cyanotoxins production in water and its detrimental impacts on human and animal health are growing primarily due to the widespread eutrophication observed in aquatic ecosystems. A review of relevant literature was done to determine the degree of cyanotoxin occurrence and its harmful effects in African waterbodies. Data were extracted from 64 published studies from 1990 to 2022 that quantified the concentration of cyanotoxins in African aquatic ecosystems. Cyanotoxins have been reported in 95 waterbodies (29 lakes, 41 reservoirs, 10 ponds, 9 rivers, 5 coastal waters, and 1 irrigation canal) from 15 African countries. Cyanotoxins were documented in all the regions of Africa except the central region. Microcystins have been reported in nearly all waterbodies (98.9%), but anatoxin-a (5.3%), cylindrospermopsin (2.1%), nodularins (2.1%), homoanatoxin-a (1.1%), and β-N-methylamino-l-alanine (1.1%) were encountered in a small number of water ecosystems, homoanatoxin-a and β-N-methylamino-l-alanine each occurred in one waterbody. The largest concentrations of microcystins and nodularins were reported in South African Lakes Nhlanganzwani (49,410 μg L−1) and Zeekoevlei (347,000 μg g−1). Microcystin concentrations exceeding the WHO guideline for lifetime drinking water (1 μg L−1) were reported in 63% of the aquatic ecosystems surveyed. The most frequently reported toxin-producing cyanobacteria genus is Microcystis spp. (73.7%), followed by Oscillatoria spp. (35.8%) and Dolichospermum spp. (33.7%). Cyanotoxin-related animal mortality and human illness were reported in the continent. Consequently, it is necessary to regularly monitor the level of nutrients, cyanobacteria, and cyanotoxins in African waterbodies in an integrated manner to devise a sustainable water resources management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Abdullahi, H., Tanimu, Y., Akinyemi, S. A., do Carmo Bittencourt-Oliveira, M., & Chia, M. A. (2022). Assessment of microcystins in surface water and irrigated vegetables in Kwaru stream, Hayin Danmani, Kaduna-Nigeria. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-21381-w

    Article  Google Scholar 

  • Addico, G. N. D., Hardege, J. D., Kohoutek, J., deGraft-Johnson, K. A. A., & Babica, P. (2017). Cyanobacteria and microcystin contamination in untreated and treated drinking water in Ghana. Advances in Oceanography and Limnology, 8(1), 92–106. https://doi.org/10.4081/aiol.2017.6323

    Article  CAS  Google Scholar 

  • Akale, A. T., Moges, M. A., Dagnew, D. C., Tilahun, S. A., & Steenhuis, T. S. (2018). Assessment of nitrate in wells and springs in the north central Ethiopian highlands. Water, 10(4), 476.

    Google Scholar 

  • Ali, K., Abiye, T., & Adam, E. (2022). Integrating in situ and current generation satellite data for temporal and spatial analysis of harmful algal blooms in the Hartbeespoort Dam, Crocodile River Basin, South Africa. Remote Sensing, 14(17), 4277.

    Google Scholar 

  • Amrani, A., Nasri, H., Azzouz, A., Kadi, Y., & Bouaïcha, N. (2014). Variation in cyanobacterial hepatotoxin (microcystin) content of water samples and two species of fishes collected from a shallow lake in Algeria. Archives of Environmental Contamination and Toxicology, 66(3), 379–389.

    CAS  Google Scholar 

  • Ballot, A., Krienitz, L., Kotut, K., Wiegand, C., Metcalf, J. S., Codd, G. A., & Pflugmacher, S. (2004). Cyanobacteria and cyanobacterial toxins in three alkaline Rift Valley lakes of Kenya—Lakes Bogoria, Nakuru and Elmenteita. Journal of Plankton Research, 26(8), 925–935.

    CAS  Google Scholar 

  • Ballot, A., Krienitz, L., Kotut, K., Wiegand, C., & Pflugmacher, S. (2005). Cyanobacteria and cyanobacterial toxins in the alkaline crater lakes Sonachi and Simbi, Kenya. Harmful Algae, 4(1), 139–150.

    CAS  Google Scholar 

  • Ballot, A., Pflugmacher, S., Wiegand, C., Kotut, K., & Krienitz, L. (2003). Cyanobacterial toxins in lake Baringo, Kenya. Limnologica, 33(1), 2–9.

    CAS  Google Scholar 

  • Ballot, A., Sandvik, M., Rundberget, T., Botha, C. J., & Miles, C. O. (2013). Diversity of cyanobacteria and cyanotoxins in Hartbeespoort Dam, South Africa. Marine and Freshwater Research, 65(2), 175–189.

    Google Scholar 

  • Boufligha, K., et al. (2021). Dynamic of microcystin-LR-producing cyanobacteria in a drinking water supply: Guenitra dam (North-East of Algeria). Egyptian Journal of Aquatic Biology and Fisheries, 25(6), 377–395.

    Google Scholar 

  • Bouhaddada, R., Nélieu, S., Nasri, H., Delarue, G., & Bouaïcha, N. (2016). High diversity of microcystins in a microcystis bloom from an Algerian lake. Environmental Pollution, 216, 836–844.

    CAS  Google Scholar 

  • Brown, C., Campher, D., & King, J. (2020). Status and trends in EFlows in southern Africa. Natural Resources Forum, 44, 66–88.

    Google Scholar 

  • Buratti, F. M., Manganelli, M., Vichi, S., Stefanelli, M., Scardala, S., Testai, E., & Funari, E. (2017). Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Archives of Toxicology, 91(3), 1049–1130.

    CAS  Google Scholar 

  • Carmichael, W. W., Azevedo, S., An, J. S., Molica, R., Jochimsen, E. M., Lau, S., Rinehart, K. L., Shaw, G. R., & Eaglesham, G. K. (2001). Human fatalities from cyanobacteria: Chemical and biological evidence for cyanotoxins. Environmental Health Perspectives, 109(7), 663–668.

    CAS  Google Scholar 

  • Chellappa, N. T., Chellappa, S. L., & Chellappa, S. (2008). Harmful phytoplankton blooms and fish mortality in a eutrophicated reservoir of Northeast Brazil. Brazilian Archives of Biology and Technology, 51(4), 633–641.

    Google Scholar 

  • Chia, A., Abolude, D., Ladan, Z., Akanbi, O., & Kalaboms, A. (2009). The presence of microcystins in aquatic ecosystems in Northern Nigeria: Zaria as a case study. Research Journal of Environmental Toxicology, 3(4), 170–178.

    Google Scholar 

  • Chia, M. A., Abdulwahab, R., Ameh, I., Balogun, J. K., & Auta, J. (2021). Farmed tilapia as an exposure route to microcystins in Zaria-Nigeria: A seasonal investigation. Environmental Pollution, 271, 116366.

    CAS  Google Scholar 

  • Chia, M. A., & Kwaghe, M. J. (2015). Microcystins contamination of surface water supply sources in Zaria-Nigeria. Environmental Monitoring and Assessment, 187(10), 1–12.

    CAS  Google Scholar 

  • Chorus, I. (2005). Water safety plans. A better regulatory approach to prevent human exposure to harmful cyanobacteria. In P. M. V. Jefhuisman & H. C. P. Matthijs (Eds.), Harmful cyanobacteria (Vol. 3, p. 249). Springer.

    Google Scholar 

  • Chorus, I., Fastner, J., & Welker, M. (2021). Cyanobacteria and cyanotoxins in a changing environment: Concepts, controversies, challenges. Water, 13(18), 2463.

    CAS  Google Scholar 

  • Chorus, I., & Welker, M. (2021). Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management. Taylor & Francis.

    Google Scholar 

  • Conradie, K. R., & Barnard, S. (2012). The dynamics of toxic Microcystis strains and microcystin production in two hypertrofic South African reservoirs. Harmful Algae, 20, 1–10.

    CAS  Google Scholar 

  • Dawson, R. (1998). The toxicology of microcystins. Toxicon, 36(7), 953–962.

    CAS  Google Scholar 

  • Dietrich, D., & Hoeger, S. (2005). Guidance values for microcystins in water and cyanobacterial supplement products (blue-green algal supplements): A reasonable or misguided approach? Toxicology and Applied Pharmacology, 203(3), 273–289.

    CAS  Google Scholar 

  • Dolman, A. M., Rücker, J., Pick, F. R., Fastner, J., Rohrlack, T., Mischke, U., & Wiedner, C. (2012). Cyanobacteria and cyanotoxins: The influence of nitrogen versus phosphorus. PLoS ONE, 7(6), e38757. https://doi.org/10.1371/journal.pone.0038757

    Article  CAS  Google Scholar 

  • Douma, M., Ouahid, Y., Del Campo, F., Loudiki, M., Mouhri, K., & Oudra, B. (2010). Identification and quantification of cyanobacterial toxins (microcystins) in two Moroccan drinking-water reservoirs (Mansour Eddahbi, Almassira). Environmental Monitoring and Assessment, 160(1), 439–450.

    CAS  Google Scholar 

  • EEPA. (2011). Environmental standards for industrial pollution control in Ethiopia. Ethiopian Environmental Protection Authority Retrieved September 1 from https://plasticsdb.surrey.ac.uk/documents/Ethiopia/Republic%20of%20Ethiopia%20%282011%29%20Environmental%20standards%20for%20industrial%20pollution%20control%20in%20Ethiopia.pdf

  • Eguzozie, K., Mavumengwana, V., Nkosi, D., Kayitesi, E., & Nnabuo-Eguzozie, E. C. (2016). Bioaccumulation and quantitative variations of microcystins in the Swartspruit River, South Africa. Archives of Environmental Contamination and Toxicology, 71(2), 286–296. https://doi.org/10.1007/s00244-016-0269-5

    Article  CAS  Google Scholar 

  • El Herry, S., Bouaïcha, N., Jenhani-Ben Rejeb, A., & Romdhane, M. (2007). First observation of microcystins in Tunisian inland waters: A threat to river mouths and lagoon ecosystems. Transitional Waters Bulletin, 1(2), 73–82.

    Google Scholar 

  • El Herry, S., Fathalli, A., Rejeb, A.J.-B., & Bouaïcha, N. (2008). Seasonal occurrence and toxicity of Microcystis spp. and Oscillatoria tenuis in the Lebna Dam, Tunisia. Water Research, 42(4–5), 1263–1273.

    Google Scholar 

  • El Khalloufi, F., El Ghazali, I., Saqrane, S., Oufdou, K., Vasconcelos, V., & Oudra, B. (2012). Phytotoxic effects of a natural bloom extract containing microcystins on Lycopersicon esculentum. Ecotoxicology and Environmental Safety, 79, 199–205.

    Google Scholar 

  • Eynard, F., Mez, K., & Walther, J.-L. (2000). Risk of cyanobacterial toxins in Riga waters (Latvia). Water Research, 34(11), 2979–2988.

    CAS  Google Scholar 

  • Fathalli, A., Jenhani, A. B. R., Moreira, C., Welker, M., Romdhane, M., Antunes, A., & Vasconcelos, V. (2011). Molecular and phylogenetic characterization of potentially toxic cyanobacteria in Tunisian freshwaters. Systematic and Applied Microbiology, 34(4), 303–310.

    CAS  Google Scholar 

  • FDRE. (2002). Environmental pollution control proclamation No. 300/2002. Federal Democratic Republic of Ethiopia (FDRE). Retrieved September 1 from https://urbanlex.unhabitat.org/sites/default/files/faolex//eth44282.pdf

  • Fetahi, T. (2019). Eutrophication of Ethiopian water bodies: A serious threat to water quality, biodiversity and public health. African Journal of Aquatic Science, 44(4), 303–312.

    CAS  Google Scholar 

  • Fristachi, A., Sinclair, J. L., Hall, S., Berkman, J. A. H., Boyer, G., Burkholder, J., Burns, J., Carmichael, W., DuFour, A., & Frazier, W. (2008). Occurrence of cyanobacterial harmful algal blooms workgroup report. In H. K. Hudnell (Ed.), Cyanobacterial harmful algal blooms: State of the science and research needs (pp. 45–103). Springer.

    Google Scholar 

  • Funari, E., & Testai, E. (2008). Human health risk assessment related to cyanotoxins exposure. Critical Reviews in Toxicology, 38(2), 97–125.

    CAS  Google Scholar 

  • Giri, S. (2021). Water quality prospective in Twenty First Century: Status of water quality in major river basins, contemporary strategies and impediments: A review. Environmental Pollution, 271, 116332.

    CAS  Google Scholar 

  • Gupta, N., Pant, S., Vijayaraghavan, R., & Rao, P. L. (2003). Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice. Toxicology, 188(2–3), 285–296.

    CAS  Google Scholar 

  • Habtemariam, H., Kifle, D., Leta, S., Beekman, W., & Lürling, M. (2021). Cyanotoxins in drinking water supply reservoir (Legedadi, Central Ethiopia): Implications for public health safety. SN Applied Sciences, 3(3), 1–10.

    Google Scholar 

  • Harding, W. R., & Paxton, B. R. (2001). Cyanobacteria in South Africa: A review. Water Research Commission Pretoria.

  • Harding, W. (1997). New regional emergence of cyanobacterial toxicosis. Harmful Algae News, 16, 12–13.

    Google Scholar 

  • Harding, W., Rowe, N., Wessels, J., Beattie, K., & Codd, G. (1995). Death of a dog attributed to the cyanobacterial (blue-green algal) hepatotoxin nodularin in South Africa. Journal of the South African Veterinary Association, 66(4), 256–259.

    CAS  Google Scholar 

  • Harding, W. R., Downing, T. G., Van Ginkel, C. E., & Moolman, A. P. (2009). An overview of cyanobacterial research and management in South Africa post-2000. Water SA, 35(4), 479–484.

    CAS  Google Scholar 

  • Harke, M. J., Steffen, M. M., Gobler, C. J., Otten, T. G., Wilhelm, S. W., Wood, S. A., & Paerl, H. W. (2016). A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae, 54, 4–20.

    Google Scholar 

  • Hooser, S. B. (2000). Fulminant hepatocyte apoptosis in vivo following microcystin-LR administration to rats. Toxicologic Pathology, 28(5), 726–733.

    CAS  Google Scholar 

  • Hrudey, M. B., Drikas, M., & Gregory, R. (1999). Remedial Measures. In I. Chorus & J. Bartram (Eds.), Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management. E & FN Spon.

    Google Scholar 

  • Ibelings, B. W., Kurmayer, R., Azevedo, S. M., Wood, S. A., Chorus, I., & Welker, M. (2021). Understanding the occurrence of cyanobacteria and cyanotoxins. In I. Chorus & M. Welker (Eds.), Toxic cyanobacteria in water (pp. 213–294). CRC Press.

    Google Scholar 

  • Jenhani, A. B., Bouaïcha, N., El Herry, S., Fathalli, A., Zekri, I., Zekri, S. H., Limam, A., Alouini, S., & Romdhane, M. S. (2006). Cyanobacteria and their toxic potential in dam water content in Northern Tunisia. Archives De L’institut Pasteur De Tunis, 83(1–4), 71–81.

    Google Scholar 

  • Jones, G. J., & Orr, P. T. (1994). Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Research, 28(4), 871–876.

    CAS  Google Scholar 

  • Juma, D. W., Wang, H., & Li, F. (2014). Impacts of population growth and economic development on water quality of a lake: Case study of Lake Victoria Kenya water. Environmental Science and Pollution Research, 21(8), 5737–5746.

    CAS  Google Scholar 

  • Kadiri, M. O., Isagba, S., Ogbebor, J. U., Omoruyi, O. A., Unusiotame-Owolagba, T. E., Lorenzi, A. S., Bittencourt-Oliveira, M. C., & Chia, M. A. (2020). The presence of microcystins in the coastal waters of Nigeria, from the Bights of Bonny and Benin, Gulf of Guinea. Environmental Science and Pollution Research, 27(28), 35284–35293.

    CAS  Google Scholar 

  • Kaggwa, M., Straubinger-Gansberger, N., & Schagerl, M. (2018). Cyanotoxins in small artificial dams in Kenya utilised for cage fish farming–a threat to local people? African Journal of Aquatic Science, 43(2), 123–129.

    CAS  Google Scholar 

  • Kotut, K., Ballot, A., & Krienitz, L. (2006). Toxic cyanobacteria and their toxins in standing waters of Kenya: Implications for water resource use. Journal of Water and Health, 4(2), 233–245.

    CAS  Google Scholar 

  • Kotut, K., Ballot, A., Wiegand, C., & Krienitz, L. (2010). Toxic cyanobacteria at Nakuru sewage oxidation ponds—A potential threat to wildlife. Limnologica, 40(1), 47–53.

    CAS  Google Scholar 

  • Krienitz, L., Ballot, A., Wiegand, C., Kotut, K., Codd, G. A., & Pflugmacher, S. (2002). Cyanotoxin-producing bloom of Anabaena flos-aquae, Anabaena discoidea and Microcystis aeruginosa (Cyanobacteria) in Nyanza Gulf of Lake Victoria, Kenya.

  • Krienitz, L., Ballot, A., Casper, P., Codd, G., Kotut, K., Metcalf, J., Morrison, L., Pflugmacher, S., & Wiegand, C. (2005). Contribution of toxic cyanobacteria to massive deaths of Lesser Flamingos at saline-alkaline lakes of Kenya. Internationale Vereinigung Für Theoretische Und Angewandte Limnologie: Verhandlungen, 29(2), 783–786.

    CAS  Google Scholar 

  • Krienitz, L., Ballot, A., Kotut, K., Wiegand, C., Pütz, S., Metcalf, J. S., Codd, G. A., & Stephan, P. (2003). Contribution of hot spring cyanobacteria to the mysterious deaths of Lesser Flamingos at Lake Bogoria, Kenya. FEMS Microbiology Ecology, 43(2), 141–148.

    CAS  Google Scholar 

  • Krienitz, L., Dadheech, P. K., Fastner, J., & Kotut, K. (2013). The rise of potentially toxin producing cyanobacteria in Lake Naivasha, Great African Rift Valley, Kenya. Harmful Algae, 27, 42–51.

    CAS  Google Scholar 

  • Kuiper-Goodman, T., Falconer, I., & Fitzgerald, J. (1999). Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management. In I. Chorus & J. Bartram (Eds.), Human health aspects. E & FN Spon.

    Google Scholar 

  • Lanckriet, S., Nyssen, J., & Adgo, E. (2017). Environmental change in lake catchments of Ethiopia. In Wiley Online Library (Vol. 28, pp. 1793–1794).

  • Lijklema, L. (1995). Development and eutrophication: Experiences and perspectives. Water Science and Technology, 31(9), 11–15.

    Google Scholar 

  • Ling, B. (2000). Health impairments arising from drinking water polluted with domestic sewage and excreta in China. Schriftenreihe Des Vereins Fur Wasser-, Boden-Und Lufthygiene, 105, 43–46.

    CAS  Google Scholar 

  • Loftin, K. A., Graham, J. L., Hilborn, E. D., Lehmann, S. C., Meyer, M. T., Dietze, J. E., & Griffith, C. B. (2016). Cyanotoxins in inland lakes of the United States: Occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007. Harmful Algae, 56, 77–90.

    CAS  Google Scholar 

  • Lugomela, C., Pratap, H. B., & Mgaya, Y. D. (2006). Cyanobacteria blooms—A possible cause of mass mortality of Lesser Flamingos in Lake Manyara and Lake Big Momela. Tanzania. Harmful Algae, 5(5), 534–541.

    Google Scholar 

  • Major, Y., Kifle, D., Spoof, L., & Meriluoto, J. (2018). Cyanobacteria and microcystins in Koka reservoir (Ethiopia). Environmental Science and Pollution Research, 25(27), 26861–26873.

    CAS  Google Scholar 

  • Mankiewicz-Boczek, J., Gągała, I., Jurczak, T., Urbaniak, M., Negussie, Y. Z., & Zalewski, M. (2015). Incidence of microcystin-producing cyanobacteria in Lake Tana, the largest waterbody in Ethiopia. African Journal of Ecology, 53(1), 54–63.

    Google Scholar 

  • Manning, S. R., & Nobles, D. R. (2017). Impact of global warming on water toxicity: Cyanotoxins. Current Opinion in Food Science, 18, 14–20.

    Google Scholar 

  • Masango, M. G., Myburgh, J. G., Labuschagne, L., Govender, D., Bengis, R. G., & Naicker, D. (2010). Assessment of microcystis bloom toxicity associated with wildlife mortality in the Kruger National Park, South Africa. Journal of Wildlife Diseases, 46(1), 95–102. https://doi.org/10.7589/0090-3558-46.1.95

    Article  Google Scholar 

  • Mbukwa, E. A., Msagati, T. A., & Mamba, B. B. (2012). Quantitative variations of intracellular microcystin-LR,-RR and-YR in samples collected from four locations in Hartbeespoort Dam in North West Province (South Africa) during the 2010/2011 summer season. International Journal of Environmental Research and Public Health, 9(10), 3484–3505.

    CAS  Google Scholar 

  • Mchau, G. J., Machunda, R., Kimanya, M., Makule, E., Gong, Y. Y., Mpolya, E., Meneely, J. P., Elliott, C. T., & Greer, B. (2021). First Report of the co-occurrence of cylindrospermopsin, nodularin and microcystins in the freshwaters of Lake Victoria, Tanzania. Exposure and Health, 13(2), 185–194.

    CAS  Google Scholar 

  • McKendrick, J. (1982). Water supply and sewage treatment in relation to water quality in Lake McIlwaine. In J. A. Thornton & W. K. Nduku (Eds.), Lake McIlwaine (pp. 202–217). Springer.

    Google Scholar 

  • Merel, S., Walker, D., Chicana, R., Snyder, S., Baurès, E., & Thomas, O. (2013). State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environment International, 59, 303–327.

    CAS  Google Scholar 

  • Metcalf, J. S., & Codd, G. A. (2012). Cyanotoxins. In B. A. Whitton (Ed.), Ecology of cyanobacteria II (pp. 651–675). Springer.

    Google Scholar 

  • Mhlanga, L., Day, J., Cronberg, G., Chimbari, M., Siziba, N., & Annadotter, H. (2006). Cyanobacteria and cyanotoxins in the source water from Lake Chivero, Harare, Zimbabwe, and the presence of cyanotoxins in drinking water. African Journal of Aquatic Science, 31(2), 165–173.

    CAS  Google Scholar 

  • Mohamed, Z., Ahmed, Z., Bakr, A., Hashem, M., & Alamri, S. (2020). Detection of free and bound microcystins in tilapia fish from Egyptian fishpond farms and its related public health risk assessment. Journal of Consumer Protection and Food Safety, 15(1), 37–47.

    CAS  Google Scholar 

  • Mohamed, Z., & Carmichael, W. (2000). Seasonal variation in microcystin levels of river Nile water at Sohag City, Egypt. Annales De Limnologie-International Journal of Limnology, 36, 227–234.

    Google Scholar 

  • Mohamed, Z. A. (2016a). Breakthrough of Oscillatoria limnetica and microcystin toxins into drinking water treatment plants-examples from the Nile River, Egypt. Water SA, 42(1), 161–165.

    CAS  Google Scholar 

  • Mohamed, Z. A. (2016b). Harmful cyanobacteria and their cyanotoxins in Egyptian fresh waters—State of knowledge and research needs. African Journal of Aquatic Science, 41(4), 361–368. https://doi.org/10.2989/16085914.2016.1219313

    Article  CAS  Google Scholar 

  • Mohamed, Z. A., & Bakr, A. (2018). Concentrations of cylindrospermopsin toxin in water and tilapia fish of tropical fishponds in Egypt, and assessing their potential risk to human health. Environmental Science and Pollution Research, 25(36), 36287–36297.

    CAS  Google Scholar 

  • Mohamed, Z. A., Carmichael, W. W., & Hussein, A. A. (2003). Estimation of microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Environmental Toxicology: An International Journal, 18(2), 137–141. https://doi.org/10.1002/tox.10111

    Article  CAS  Google Scholar 

  • Mohamed, Z. A., Deyab, M. A., Abou-Dobara, M. I., El-Sayed, A. K., & El-Raghi, W. M. (2015). Occurrence of cyanobacteria and microcystin toxins in raw and treated waters of the Nile River, Egypt: Implication for water treatment and human health. Environmental Science and Pollution Research, 22(15), 11716–11727.

    CAS  Google Scholar 

  • Mokoena, M. M., & Mukhola, M. S. (2019). Current effects of cyanobacteria toxin in water sources and containers in the Hartbeespoort Dam Area, South Africa. International Journal of Environmental Research and Public Health, 16(22), 4468.

    CAS  Google Scholar 

  • Mwaura, F., Koyo, A. O., & Zech, B. (2004). Cyanobacterial blooms and the presence of cyanotoxins in small high altitude tropical headwater reservoirs in Kenya. Journal of Water and Health, 2(1), 49–57.

    CAS  Google Scholar 

  • Nasri, A.-B., Bouaïcha, N., & Fastner, J. (2004). First report of a microcystin-containing bloom of the cyanobacteria Microcystis spp. in Lake Oubeira, Eastern Algeria. Archives of Environmental Contamination and Toxicology, 46(2), 197–202.

    CAS  Google Scholar 

  • Nasri, H., Bouaïcha, N., & Harche, M. K. (2007). A new morphospecies of Microcystis sp. forming bloom in the Cheffia dam (Algeria): Seasonal variation of microcystin concentrations in raw water and their removal in a full-scale treatment plant. Environmental Toxicology: an International Journal, 22(4), 347–356.

    CAS  Google Scholar 

  • Nasri, H., El Herry, S., & Bouaïcha, N. (2008). First reported case of turtle deaths during a toxic Microcystis spp. bloom in Lake Oubeira Algeria. Ecotoxicology and Environmental Safety, 71(2), 535–544.

    CAS  Google Scholar 

  • Nchabeleng, T., Cheng, P., Oberholster, P. J., Botha, A., Smit, W. J., & Luus-Powell, W. (2014). Microcystin-LR equivalent concentrations in fish tissue during a postbloom Microcystis exposure in Loskop Dam, South Africa. African Journal of Aquatic Science, 39(4), 459–466.

    CAS  Google Scholar 

  • Ndlela, L. L., Oberholster, P. J., Van Wyk, J., & Cheng, P.-H. (2016). An overview of cyanobacterial bloom occurrences and research in Africa over the last decade. Harmful Algae, 60, 11–26.

    CAS  Google Scholar 

  • NWA. (1998). Revision of general authorisations in terms of Section 39 of the National Water Act, 1998 (act no. 36 of 1998). University of Pretoria.

  • Nyenje, P., Foppen, J., Uhlenbrook, S., Kulabako, R., & Muwanga, A. (2010). Eutrophication and nutrient release in urban areas of sub-Saharan Africa—A review. Science of the Total Environment, 408(3), 447–455. https://doi.org/10.1016/j.scitotenv.2009.10.020

    Article  CAS  Google Scholar 

  • Oberholster, P. J., Myburgh, J. G., Govender, D., Bengis, R., & Botha, A.-M. (2009). Identification of toxigenic Microcystis strains after incidents of wild animal mortalities in the Kruger National Park, South Africa. Ecotoxicology and Environmental Safety, 72(4), 1177–1182.

    CAS  Google Scholar 

  • Okello, W., Ostermaier, V., Portmann, C., Gademann, K., & Kurmayer, R. (2010). Spatial isolation favours the divergence in microcystin net production by Microcystis in Ugandan freshwater lakes. Water Research, 44(9), 2803–2814.

    CAS  Google Scholar 

  • Olokotum, M., Humbert, J.-F., Quiblier, C., Okello, W., Semyalo, R., Troussellier, M., Marie, B., Baumann, K., Kurmayer, R., & Bernard, C. (2022). Characterization of potential threats from cyanobacterial toxins in Lake Victoria embayments and during water treatment. Toxins, 14(10), 664.

    CAS  Google Scholar 

  • Oudra, B., Loudiki, M., Sbiyyaa, B., Martins, R., Vasconcelos, V., & Namikoshi, N. (2001). Isolation, characterization and quantification of microcystins (heptapeptides hepatotoxins) in Microcystis aeruginosa dominated bloom of Lalla Takerkoust lake–reservoir (Morocco). Toxicon, 39(9), 1375–1381.

    CAS  Google Scholar 

  • Oudra, B., Loudiki, M., Vasconcelos, V., Sabour, B., Sbiyyaa, B., Oufdou, K., & Mezrioui, N. (2002). Detection and quantification of microcystins from cyanobacteria strains isolated from reservoirs and ponds in Morocco. Environmental Toxicology: An International Journal, 17(1), 32–39.

    CAS  Google Scholar 

  • Paerl, H. W. (2014). Mitigating harmful cyanobacterial blooms in a human-and climatically-impacted world. Life, 4(4), 988–1012.

    Google Scholar 

  • Pedro, O., Correia, D., Lie, E., Skåre, J. U., Leão, J., Neves, L., Sandvik, M., & Berdal, K. G. (2011). Polymerase chain reaction (PCR) detection of the predominant microcystin-producing genotype of cyanobacteria in Mozambican lakes. African Journal of Biotechnology, 10(83), 19299–19308.

    CAS  Google Scholar 

  • Pedro, O., Rundberget, T., Lie, E., Correia, D., Skaare, J. U., Berdal, K. G., Neves, L., & Sandvik, M. (2012). Occurrence of microcystins in freshwater bodies in Southern Mozambique. Journal of Research in Environmental Science and Toxicology, 1, 58–65.

    Google Scholar 

  • Pelaez, M., Antoniou, M. G., He, X., Dionysiou, D. D., Cruz, A. A., Tsimeli, K., Triantis, T., Hiskia, A., Kaloudis, T., & Williams, C. (2010). Sources and occurrence of cyanotoxins worldwide. In D. Fatta-Kassinos, K. Bester, & K. Kümmerer (Eds.), Xenobiotics in the urban water cycle (pp. 101–127). Springer.

    Google Scholar 

  • Peterson, H. G., Hrudey, S. E., Cantin, I. A., Perley, T. R., & Kenefick, S. L. (1995). Physiological toxicity, cell membrane damage and the release of dissolved organic carbon and geosmin by Aphanizomenon flos-aquae after exposure to water treatment chemicals. Water Research, 29(6), 1515–1523.

    CAS  Google Scholar 

  • Raffoul, M., Enanga, E., Senar, O. E., Creed, I., & Trick, C. (2020). Assessing the potential health risk of cyanobacteria and cyanotoxins in Lake Naivasha, Kenya. Hydrobiologia, 847(4), 1041–1056.

    CAS  Google Scholar 

  • Recknagel, F., Orr, P. T., Bartkow, M., Swanepoel, A., & Cao, H. (2017). Early warning of limit-exceeding concentrations of cyanobacteria and cyanotoxins in drinking water reservoirs by inferential modelling. Harmful Algae, 69, 18–27.

    CAS  Google Scholar 

  • Reij, C. (1991). Indigenous soil and water conservation in Africa. Sustainable Agriculture Programme of the International Institute for Environment and Development.

  • Roegner, A., Sitoki, L., Weirich, C., Corman, J., Owage, D., Umami, M., Odada, E., Miruka, J., Ogari, Z., & Smith, W. (2020). Harmful algal blooms threaten the health of peri-urban fisher communities: A case study in Kisumu Bay, Lake Victoria, Kenya. Exposure and Health, 12(4), 835–848.

    CAS  Google Scholar 

  • Salameh, J.-P., Bossuyt, P. M., McGrath, T. A., Thombs, B. D., Hyde, C. J., Macaskill, P., Deeks, J. J., Leeflang, M., Korevaar, D. A., Whiting, P., Takwoingi, Y., Reitsma, J. B., Cohen, J. F., Frank, R. A., Hunt, H. A., Hooft, L., Rutjes, A. W. S., Willis, B. H., Gatsonis, C., et al. (2020). Preferred reporting items for systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA): Explanation, elaboration, and checklist. BMJ, 370, m2632. https://doi.org/10.1136/bmj.m2632

    Article  Google Scholar 

  • Sasner, J. J., Ikawa, M., Foxall, T. L., & Watson, W. H. (1981). Studies on aphantoxin from aphanizomenon flos-aquae in New Hampshire. In W. W. Carmichael (Ed.), The water environment: Algal toxins and health (pp. 389–403). Boston: Springer. https://doi.org/10.1007/978-1-4613-3267-1_27

    Chapter  Google Scholar 

  • Scott, L. L., Downing, S., & Downing, T. (2018). Potential for dietary exposure to β-N-methylamino-l-alanine and microcystin from a freshwater system. Toxicon, 150, 261–266.

    CAS  Google Scholar 

  • Scott, W. (1991). Occurrence and significance of toxic cyanobacteria in Southern Africa. Water Science and Technology, 23(1–3), 175–180.

    Google Scholar 

  • Scott, W. E., Barlow, D. J., & Hauman, J. H. (1981). Studies on the ecology, growth and physiology of toxic Microcystis aeruginosa in South Africa. In W. W. Carmichael (Ed.), The water environment: Algal toxins and health (pp. 49–69). Springer.

    Google Scholar 

  • Semyalo, R., Rohrlack, T., Naggawa, C., & Nyakairu, G. W. (2010). Microcystin concentrations in Nile tilapia (Oreochromis niloticus) caught from Murchison Bay, Lake Victoria and Lake Mburo: Uganda. Hydrobiologia, 638(1), 235–244.

    CAS  Google Scholar 

  • Shaw, G. R., McKenzie, R. A., Wickramasinghe, W. A., Seawright, A. A., Eaglesham, G. K., & Moore, M. R. (2002). Comparative toxicity of the cyanobacterial toxin cylindrospermopsin between mice and cattle: human implications. In K. A. Steidinger, J. H. Landsberg, C. R. Tomas, & G. A. Vargo (Eds.), Harmful algae (pp. 465–467). St. Petersburg: Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography, and Intergovernmental Oceanographic Commission of UNESCO.

    Google Scholar 

  • Simiyu, B. M., Oduor, S. O., Rohrlack, T., Sitoki, L., & Kurmayer, R. (2018). Microcystin content in phytoplankton and in small fish from eutrophic Nyanza Gulf, Lake Victoria, Kenya. Toxins, 10(7), 275.

    Google Scholar 

  • Singo, A., Myburgh, J. G., Laver, P. N., Venter, E. A., Ferreira, G. C., Rösemann, G. M., & Botha, C. J. (2017). Vertical transmission of microcystins to Nile crocodile (Crocodylus niloticus) eggs. Toxicon, 134, 50–56.

    CAS  Google Scholar 

  • Soll, M., & Williams, M. (1985). Mortality of a white rhinoceros (Ceratotherium simum) suspected to be associated with the blue-green alga Microcystis aeruginosa. Journal of the South African Veterinary Association, 56(1), 49–51.

    CAS  Google Scholar 

  • Stauffer, B. A., Bowers, H. A., Buckley, E., Davis, T. W., Johengen, T. H., Kudela, R., McManus, M. A., Purcell, H., Smith, G. J., & Vander Woude, A. (2019). Considerations in harmful algal bloom research and monitoring: Perspectives from a consensus-building workshop and technology testing. Frontiers in Marine Science, 6, 399.

    Google Scholar 

  • Steyn, D. (1943). Poisoning of animals by algae on dams and pans. Farming in South Africa, 18, 489–492.

    CAS  Google Scholar 

  • Steyn, D. G. (1945). Poisoning of animals and human beings by algae. South African Journal of Science, 41, 243–244.

    Google Scholar 

  • Straubinger-Gansberger, N., Kaggwa, M. N., & Schagerl, M. (2014). Phytoplankton patterns along a series of small man-made reservoirs in Kenya. Environmental Monitoring and Assessment, 186(8), 5153–5166.

    Google Scholar 

  • Svirčev, Z., Lalić, D., Bojadžija Savić, G., Tokodi, N., Drobac Backović, D., Chen, L., Meriluoto, J., & Codd, G. A. (2019). Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Archives of Toxicology, 93(9), 2429–2481.

    Google Scholar 

  • Szlag, D. C., Sinclair, J. L., Southwell, B., & Westrick, J. A. (2015). Cyanobacteria and cyanotoxins occurrence and removal from five high-risk conventional treatment drinking water plants. Toxins, 7(6), 2198–2220.

    CAS  Google Scholar 

  • Tanvir, R. U., Hu, Z., Zhang, Y., & Lu, J. (2021). Cyanobacterial community succession and associated cyanotoxin production in hypereutrophic and eutrophic freshwaters. Environmental Pollution, 290, 118056. https://doi.org/10.1016/j.envpol.2021.118056

    Article  CAS  Google Scholar 

  • Theron, C. P. (1990a). Kameelperdvrektes en die teenwoordigheid van Microcystis in Bloemhof Dam. DWAF-HRI Report N, 4.

  • Theron, C. P. (1990b). Ondersoek na die voorkoms van Microcystis in Klipdrif Dam.

  • Thornton, J. A. N. W. K. (1982). Lake McIlwaine : the eutrophication and recovery of a tropical African man-made lake. Dr. W. Junk ; Distributors for the U.S. and Canada, Kluwer Boston.

  • Thornton, J., & Boddington, G. (1989). A new look at the old problem of eutrophication management in Southern Africa. The Environmentalist, 9(2), 121–129.

    Google Scholar 

  • Tibebe, D., Zewge, F., Lemma, B., & Kassa, Y. (2022). Assessment of spatio-temporal variations of selected water quality parameters of Lake Ziway, Ethiopia using multivariate techniques. BMC Chemistry, 16(1), 1–18.

    Google Scholar 

  • Tilahun, S., Kifle, D., Tigist, W. Z., Johansen, J. A., Taye, B. D., & Hansen, J. H. (2019). Temporal dynamics of intra-and extra-cellular microcystins concentrations in Koka reservoir (Ethiopia): Implications for public health risk. Toxicon, 168, 83–92.

    CAS  Google Scholar 

  • Van Ginkel, C. (2010). Investigating the applicability of ecological informatics modelling techniques for predicting harmfull algal blooms in hypertrophic reservoirs of South Africa (WRC Report No. TT 451/10, Issue. W. R. Commission).

  • Van Ginkel, C. (2011). Eutrophication: Present reality and future challenges for South Africa. Water SA, 37(5), 693–702.

    Google Scholar 

  • Van Ginkel, C., & Hohls, B. (1999). Toxic algae in Erfenis and Allemanskraal dams. Occasional report by the Institute for Quality Studies, Department of Water Affairs and Forestry.

  • Van Halderen, A., Harding, W., Wessels, J. C., Schneider, D., Heine, E., Van der Merwe, J., & Fourie, J. (1995). Cyanobacterial (blue-green algae) poisoning of livestock in the western Cape Province of South Africa. Journal of the South African Veterinary Association, 66(4), 260–264.

    Google Scholar 

  • Vidal, F., Sedan, D., D’Agostino, D., Cavalieri, M. L., Mullen, E., Parot Varela, M. M., Flores, C., Caixach, J., & Andrinolo, D. (2017). Recreational exposure during algal bloom in Carrasco Beach, Uruguay: A liver failure case report. Toxins, 9(9), 267.

    Google Scholar 

  • WHO. (2016). Protecting surface water for health: Identifying, assessing and managing drinking-water quality risks in surface-water catchments. WHO.

    Google Scholar 

  • WHO. (2020). Cyanobacterial toxins: Anatoxin-a and analogues. WHO.

    Google Scholar 

  • Wicks, R. J., & Thiel, P. G. (1990). Environmental factors affecting the production of peptide toxins in floating scums of the cyanobacterium Microcystis aeruginosa in a hypertrophic African reservoir. Environmental Science & Technology, 24(9), 1413–1418.

    CAS  Google Scholar 

  • Wiechers, H., & Heynike, J. (1986). Sources of phosphorus which give rise to eutrophication in South African waters. Water SA, 12(2), 99–102.

    CAS  Google Scholar 

  • Willén, E., Ahlgren, G., Tilahun, G., Spoof, L., Neffling, M.-R., & Meriluoto, J. (2011). Cyanotoxin production in seven Ethiopian Rift Valley lakes. Inland Waters, 1(2), 81–91.

    Google Scholar 

  • Zewde, T., Kifle, D., Johansen, J., Demissie, T., Hansen, J., & Tadesse, Z. (2020). Cyanobacterial abundance and microcystins in water, seston and fish tissues in Lake Hora-Arsedi (Ethiopia). African Journal of Aquatic Science, 45(4), 475–485.

    CAS  Google Scholar 

  • Zilberg, B. (1966). Gastroenteritis in Salisbury European children—A five-year study. Central African Journal of Medicine, 12(9), 164–168.

    CAS  Google Scholar 

  • Zinabu, E., Kelderman, P., Van Der Kwast, J., & Irvine, K. (2018). Evaluating the effect of diffuse and point source nutrient transfers on water quality in the Kombolcha River Basin, an industrializing Ethiopian catchment. Land Degradation & Development, 29(10), 3366–3378.

    Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the paper conception and design. Material preparation, and data collection and analysis were performed by TM, TF, FE, and AM. The first draft of the manuscript was written by TM, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tesfaye Muluye.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

All authors want to publish the research paper entitled “Cyanotoxins in African Water Bodies and its Adverse Effects. A Review.” in Environmental Geochemistry and Health journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muluye, T., Fetahi, T., Engdaw, F. et al. Cyanotoxins in African waterbodies: occurrence, adverse effects, and potential risk to animal and human health. Environ Geochem Health 45, 7519–7542 (2023). https://doi.org/10.1007/s10653-023-01724-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01724-3

Keywords

Navigation