Skip to main content
Log in

Lias overexpression alleviates pulmonary injury induced by fine particulate matter in mice

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Oxidative stress and inflammation are mechanisms underlying toxicity induced by fine particulate matter (PM2.5). The antioxidant baseline of the human body modulates the intensity of oxidative stress in vivo. This present study aimed to evaluate the role of endogenous antioxidants in alleviating PM2.5-induced pulmonary injury using a novel mouse model (LiasH/H) with an endogenous antioxidant capacity of approximately 150% of its wild-type counterpart (Lias+/+). LiasH/H and wild-type (Lias+/+) mice were randomly divided into control and PM2.5 exposure groups (n = 10), respectively. Mice in the PM2.5 group and the control group were intratracheally instilled with PM2.5 suspension and saline, respectively, once a day for 7 consecutive days. The metal content, major pathological changes in the lung, and levels of oxidative stress and inflammation biomarkers were examined. The results showed that PM2.5 exposure induced oxidative stress in mice. Overexpression of the Lias gene significantly increased the antioxidant levels and decreased inflammatory responses induced by PM2.5. Further study found that LiasH/H mice exerted their antioxidant function by activating the ROS-p38MAPK-Nrf2 pathway. Therefore, the novel mouse model is useful for the elucidation of the mechanisms of pulmonary injury induced by PM2.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

If the data is not suitable for disclosure, you can contact the corresponding author.

Abbreviations

BALF:

Bronchoalveolar lavage fluid

COPD:

Chronic obstructive pulmonary disease

CAT:

Catalase

GSH:

Reduced glutathione

GCLC:

Glutamate-cysteine ligase

HO-1:

Haemoxygenase-1

NQO1:

NAD(P)H quinone oxidoreductase 1

KEAP1:

Kelch-like ECH-associated protein-1

LA:

α-Lipoic acid

Lias:

Lipoic acid synthase

MAPK:

Mitogen-activated protein kinase

MDA:

Malondialdehyde

MCP-1:

Monocyte chemoattractant protein-1

Nrf2:

Nuclear factor erythroid 2-related factor 2

SOD2:

Superoxide dismutase 2

ROS:

Reactive oxygen species

TAC:

Total antioxidation capacity

TNF-α :

Tumor necrosis factor-α

IL-1β :

Interleukin-1β

IL-6:

Interleukin-6

References

  • Ambrosi, N., Arrosagaray, V., Guerrieri, D., Uva, P. D., Petroni, J., Herrera, M. B., Iovanna, J. L., León, L., Incardona, C., Chuluyan, H. E., & Casadei, D. H. (2016). α-lipoic acid protects against ischemia-reperfusion injury in simultaneous kidney-pancreas transplantation. Transplantation, 100(4), 908–915. https://doi.org/10.1097/TP.0000000000000981.

    Article  CAS  Google Scholar 

  • Araujo, J. A., & Nel, A. E. (2009). Particulate matter and atherosclerosis: Role of particle size, composition and oxidative stress. Particle and Fibre Toxicology, 6, 24. https://doi.org/10.1186/1743-8977-6-24.

    Article  Google Scholar 

  • Atukeren, P., Aydin, S., Uslu, E., Gumustas, M. K., & Cakatay, U. (2010). Redox homeostasis of albumin in relation to alpha-lipoic acid and dihydrolipoic acid. Oxidative Medicine and Cellular Longevity, 3(3), 206–213. https://doi.org/10.4161/oxim.3.3.11786.

  • Bellezza, I., Giambanco, I., Minelli, A., & Donato, R. (2018). Nrf2-Keap1 signaling in oxidative and reductive stress. BBA-Molecular Cell Research, 1865(5), 721–733. https://doi.org/10.1016/j.bbamcr.2018.02.010.

    CAS  Google Scholar 

  • Block, G., Jensen, C. D., Morrow, J. D., Holland, N., Norkus, E. P., Milne, G. L., Hudes, M., Dalvi, T. B., Crawford, P. B., Fung, E. B., Schumacher, L., & Harmatz, P. (2008). The effect of vitamins C and E on biomarkers of oxidative stress depends on baseline level. Free Radical Biology & Medicine, 45(4), 377–384. https://doi.org/10.1016/j.freeradbiomed.2008.04.005.

    Article  CAS  Google Scholar 

  • Casciato, P., Ambrosi, N., Caro, F., Vazquez, M., Müllen, E., Gadano, A., de Santibañes, E., de Santibañes, M., Zandomeni, M., Chahdi, M., Lazarte, J. C., Biagiola, D. A., Iaquinandi, J. C., Santofimia-Castaño, P., Iovanna, J., Incardona, C., & Chuluyan, E. (2018). α-lipoic acid reduces postreperfusion syndrome in human liver transplantation—A pilot study. Transplant International, 31(12), 1357–1368. https://doi.org/10.1111/tri.13314.

    Article  CAS  Google Scholar 

  • Charrier, J. G., & Anastasio, C. (2011). Impacts of antioxidants on hydroxyl radical production from individual and mixed transition metals in a surrogate lung fluid. Atmospheric Environment, 45, 7555–7562. https://doi.org/10.1016/j.atmosenv.2010.12.021.

    Article  CAS  Google Scholar 

  • Chen, B., Lu, Y., Chen, Y., & Cheng, J. (2015). The role of Nrf2 in oxidative stress-induced endothelial injuries. Journal of Endocrinology, 225(3), R83-99. https://doi.org/10.1530/JOE-14-0662.

    Article  CAS  Google Scholar 

  • Chen, C., Han, X., Wang, G., Liu, D., Bao, L., Jiao, C., Luan, J., Hou, Y., Xu, Y., Wang, H., Zhang, Q., Zhou, H., Fu, J., & Pi, J. (2021). Nrf2 deficiency aggravates the kidney injury induced by subacute cadmium exposure in mice. Archives of Toxicology, 95(3), 883–893. https://doi.org/10.1007/s00204-020-02964-3.

  • Chen, J., Jiang, W., Cai, J., Tao, W., Gao, X., & Jiang, X. (2005). Quantification of lipoic acid in plasma by high-performance liquid chromatography-electrospray ionization mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 824(1–2), 249–257. https://doi.org/10.1016/j.jchromb.2005.07.038.

    Article  CAS  Google Scholar 

  • Chen, L. C., & Lippmann, M. (2009). Effects of metals within ambient air particulate matter (PM) on human health. Inhalation Toxicology, 21(1), 1–31. https://doi.org/10.1080/08958370802105405

    Article  CAS  Google Scholar 

  • Cui, L., Shi, L., Li, D., Li, X., Su, X., Chen, L., Jiang, Q., Jiang, M., Luo, J., Ji, A., Chen, C., Wang, J., Tang, J., Pi, J., Chen, R., Chen, W., Zhang, R., & Zheng, Y. (2020). Real-ambient particulate matter exposure-induced cardiotoxicity in C57/B6 mice. Frontiers in Fharmacology., 31(11), 199. https://doi.org/10.3389/fphar.2020.00199.

    Article  CAS  Google Scholar 

  • Davel, A. P., Lemos, M., Pastro, L. M., Pedro, S. C., de André, P. A., Hebeda, C., Farsky, S. H., Saldiva, P. H., & Rossoni, L. V. (2012). Endothelial dysfunction in the pulmonary artery induced by concentrated fine particulate matter exposure is associated with local but not systemic inflammation. Toxicology, 295(1–3), 39–46. https://doi.org/10.1016/j.tox.2012.02.004.

    Article  CAS  Google Scholar 

  • Deng, X., Rui, W., Zhang, F., & Ding, W. (2013a). PM2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells. Cell Biology and Toxicology, 29(3), 143–157. https://doi.org/10.1007/s10565-013-9242-5.

    Article  CAS  Google Scholar 

  • Deng, X., Zhang, F., Rui, W., Long, F., Wang, L., Feng, Z., Chen, D., & Ding, W. (2013b). PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicology in Vitro, 27(6), 1762–1770. https://doi.org/10.1016/j.tiv.2013.05.004.

    Article  CAS  Google Scholar 

  • Di Pietro, A., Visalli, G., Baluce, B., Micale, R. T., La Maestra, S., Spataro, P., & De Flora, S. (2011). Multigenerational mitochondrial alterations in pneumocytes exposed to oil fly ash metals. International Journal of Hygiene and Environmental Health, 214(2), 138–144. https://doi.org/10.1016/j.ijheh.2010.10.003.

    Article  Google Scholar 

  • Dörsam, B., & Fahrer, J. (2016). The disulfide compound α-lipoic acid and its derivatives: A novel class of anticancer agents targeting mitochondria. Cancer Letters, 371(1), 12–19. https://doi.org/10.1016/j.canlet.2015.11.019.

    Article  CAS  Google Scholar 

  • Feng, S., Gao, D., Liao, F., Zhou, F., & Wang, X. (2016). The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicology and Environmental Safety, 128, 67–74. https://doi.org/10.1016/j.ecoenv.2016.01.030.

    Article  CAS  Google Scholar 

  • Habre, R., Moshier, E., Castro, W., Nath, A., Grunin, A., Rohr, A., Godbold, J., Schachter, N., Kattan, M., Coull, B., & Koutrakis, P. (2014). The effects of PM2.5 and its components from indoor and outdoor sources on cough and wheeze symptoms in asthmatic children. Journal of Exposure Science & Environmental Epidemiology, 24(4), 380–387. https://doi.org/10.1038/jes.2014.21.

    Article  CAS  Google Scholar 

  • He, M., Ichinose, T., Yoshida, S., Ito, T., He, C., Yoshida, Y., Arashidani, K., Takano, H., Sun, G., & Shibamoto, T. (2017). PM2.5-induced lung inflammation in mice: Differences of inflammatory response in macrophages and type II alveolar cells: PM2.5 caused lung inflammation: macrophages vs. alveolar cells. Journal of Applied Toxicology, 37(10), 1203–1218. https://doi.org/10.1002/jat.3482.

    Article  CAS  Google Scholar 

  • Huang, K., Chen, C., Hao, J., Huang, J., Wang, S., Liu, P., & Huang, H. (2015). Polydatin promotes Nrf2-ARE anti-oxidative pathway through activating Sirt1 to resist AGEs-induced upregulation of fibronetin and transforming growth factor-β1 in rat glomerular messangial cells. Molecular and Cellular Endocrinology, 399, 178–189. https://doi.org/10.1016/j.mce.2014.08.014.

    Article  CAS  Google Scholar 

  • Janero, D. R. (1990). Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology & Medicine, 9(6), 515–540. https://doi.org/10.1016/0891-5849(90)90131-2.

    Article  CAS  Google Scholar 

  • Jin, X., Xue, B., Zhou, Q., Su, R., & Li, Z. (2018). Mitochondrial damage mediated by ROS incurs bronchial epithelial cell apoptosis upon ambient PM2.5 exposure. Journal of Toxicological Sciences, 43, 101–111. https://doi.org/10.2131/jts.43.101.

    Article  CAS  Google Scholar 

  • Jin, Y., Wu, W., Zhang, W., Zhao, Y., Wu, Y., Ge, G., Ba, Y., Guo, Q., Gao, T., Chi, X., Hao, H., Wang, J., & Feng, F. (2017). Involvement of EGF receptor signaling and NLRP12 inflammasome in fine particulate matter-induced lung inflammation in mice. Environmental Toxicology, 32(4), 1121–1134. https://doi.org/10.1002/tox.22308.

    Article  CAS  Google Scholar 

  • Kakkar, R., Mantha, S. V., Radhi, J., Prasad, K., & Kalra, J. (1997). Antioxidant defense system in diabetic kidney: A time course study. Life Sciences, 60(9), 667–679. https://doi.org/10.1016/s0024-3205(96)00702-3.

    Article  CAS  Google Scholar 

  • Li, F., Gu, J., Xin, J., Schnelle-Kreis, J., Wang, Y., Liu, Z., Shen, R., Michalke, B., Abbaszade, G., & Zimmermann, R. (2021a). Characteristics of chemical profile, sources and PAH toxicity of PM(2.5) in beijing in autumn-winter transit season with regard to domestic heating, pollution control measures and meteorology. Chemosphere, 276, 130143. https://doi.org/10.1016/j.chemosphere.2021.130143.

    Article  CAS  Google Scholar 

  • Li, J., An, Z., Song, J., Du, J., Zhang, L., Jiang, J., Ma, Y., Wang, C., Zhang, J., & Wu, W. (2021b). Fine particulate matter-induced lung inflammation is mediated by pyroptosis in mice. Ecotoxicology and Environmental Safety, 219, 112351. https://doi.org/10.1016/j.ecoenv.2021.112351.

    Article  CAS  Google Scholar 

  • Li, J., Li, H., Li, H., Guo, W., An, Z., Zeng, X., Li, W., Li, H., Song, J., & Wu, W. (2019). Amelioration of PM25-induced lung toxicity in rats by nutritional supplementation with fish oil and Vitamin E. Respiratory Research, 20(1), 76. https://doi.org/10.1186/s12931-019-1045-7.

    Article  Google Scholar 

  • Li, L., Feng, L., Jiang, W. D., Jiang, J., Wu, P., Zhao, J., Kuang, S. Y., Tang, L., Tang, W. N., Zhang, Y. A., Zhou, X. Q., & Liu, Y. (2015). Dietary pantothenic acid depressed the gill immune and physical barrier function via NF-κB, TOR, Nrf2, p38MAPK and MLCK signaling pathways in grass carp (Ctenopharyngodon idella). Fish & Shellfish Immunology, 47(1), 500–510. https://doi.org/10.1016/j.fsi.2015.09.038.

    Article  CAS  Google Scholar 

  • Liu, B., Wu, S. D., Shen, L. J., Zhao, T. X., Wei, Y., Tang, X. L., Long, C. L., Zhou, Y., He, D. W., Lin, T., & Wei, G. H. (2019). Spermatogenesis dysfunction induced by PM2.5 from automobile exhaust via the ROS-mediated MAPK signaling pathway. Ecotoxicology and Environmental Safety., 167, 161–168. https://doi.org/10.1016/j.ecoenv.2018.09.118.

    Article  CAS  Google Scholar 

  • Lobato, R. O., Nunes, S. M., Wasielesky, W., Fattorini, D., Regoli, F., Monserrat, J. M., & Ventura-Lima, J. (2013). The role of lipoic acid in the protection against of metallic pollutant effects in the shrimp Litopenaeus vannamei (Crustacea, Decapoda). Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 165(4), 491–497. https://doi.org/10.1016/j.cbpa.2013.03.015.

  • Morales-Nebreda, L. I., Rogel, M. R., Eisenberg, J. L., Hamill, K. J., Soberanes, S., Nigdelioglu, R., Chi, M., Cho, T., Radigan, K. A., Ridge, K. M., Misharin, A. V., Woychek, A., Hopkinson, S., Perlman, H., Mutlu, G. M., Pardo, A., Selman, M., Jonathan, C. R., Jones, G. R., & Budinger, S. (2015). Lung-specific loss of α3 laminin worsens bleomycin-induced pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology, 52(4), 503–512. https://doi.org/10.1165/rcmb.2014-0057OC.

    Article  CAS  Google Scholar 

  • Mossman, B. T., Borm, P. J., Castranova, V., Costa, D. L., Donaldson, K., & Kleeberger, S. R. (2007). Mechanisms of action of inhaled fibers, particles and nanoparticles in lung and cardiovascular diseases. Particle and Fibre Toxicology, 4, 4. https://doi.org/10.1186/1743-8977-4-4.

    Article  Google Scholar 

  • Pardo, M., Qiu, X., Zimmermann, R., & Rudich, Y. (2020). Particulate matter toxicity is Nrf2 and mitochondria dependent: The roles of metals and polycyclic aromatic hydrocarbons. Chemical Research in Toxicology, 33(5), 1110–1120. https://doi.org/10.1021/acs.chemrestox.0c00007.

  • Pope, C. A., 3rd., Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E., Krewski, D., & Godleski, J. J. (2004). Cardiovascular mortality and long-term exposure to particulate air pollution: Epidemiological evidence of general pathophysiological pathways of disease. Circulation, 109(1), 71–77. https://doi.org/10.1161/01.CIR.0000108927.80044.7F.

    Article  Google Scholar 

  • Riediker, M., Zink, D., Kreyling, W., Oberdörster, G., Elder, A., Graham, U., Lynch, I., Duschl, A., Ichihara, G., Ichihara, S., Kobayashi, T., Hisanaga, N., Umezawa, M., Cheng, T. J., Handy, R., Gulumian, M., Tinkle, S., & Cassee, F. (2019). Particle toxicology and health—Where are we? Particle and Fibre Toxicology, 16(1), 19. https://doi.org/10.1186/s12989-019-0302-8.

    Article  CAS  Google Scholar 

  • Saklayen, M. G., Yap, J., & Vallyathan, V. (2010). Effect of month-long treatment with oral N-acetylcysteine on the oxidative stress and proteinuria in patients with diabetic nephropathy: A pilot study. Journal of Investigative Medicine, 58(1), 28–31. https://doi.org/10.2310/JIM.0b013e3181c5e9e9.

    Article  CAS  Google Scholar 

  • Sena, C., Cipriano, M., Botelho, M., & Seiça, R. (2018). Lipoic acid prevents high-fat diet-induced hepatic steatosis in goto kakizaki rats by reducing oxidative stress through Nrf2 activation. International Journal of Molecular Sciences, 19(9), 2706. https://doi.org/10.3390/ijms19092706

    Article  CAS  Google Scholar 

  • Shay, K. P., Moreau, R. F., Smith, E. J., Smith, A. R., & Hagen, T. M. (2009). Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential. Biochimica Et Biophysica Acta, 1790(10), 1149–1160. https://doi.org/10.1016/j.bbagen.2009.07.026.

    Article  CAS  Google Scholar 

  • Song, L., Jiang, S., Pan, K., Du, X., Zeng, X., Zhang, J., Zhou, J., Sun, Q., Xie, Y., & Zhao, J. (2020). AMPK activation ameliorates fine particulate matter-induced hepatic injury. Environmental Science and Pollution Research International, 27(17), 21311–21319. https://doi.org/10.1007/s11356-020-08624-4.

    Article  CAS  Google Scholar 

  • Wang, G., Jiang, R., Zhao, Z., & Song, W. (2013). Effects of ozone and fine particulate matter (PM2.5) on rat system inflammation and cardiac function. Toxicology Letters, 217(1), 23–33. https://doi.org/10.1016/j.toxlet.2012.11.009.

    Article  CAS  Google Scholar 

  • Weichenthal, S. A., Pollitt, K. G., & Villeneuve, P. J. (2013). PM2.5, oxidant defence and cardiorespiratory health: A review. Environmental Health. https://doi.org/10.1186/1476-069X-12-40.

    Article  Google Scholar 

  • Willers, S. M., Eriksson, C., Gidhagen, L., Nilsson, M. E., Pershagen, G., & Bellander, T. (2013). Fine and coarse particulate air pollution in relation to respiratory health in Sweden. European Respiratory Journal, 42(4), 924–934. https://doi.org/10.1183/09031936.00088212.

    Article  Google Scholar 

  • Wu, S., Deng, F., Hao, Y., Shima, M., Wang, X., Zheng, C., Wei, H., Lv, H., Lu, X., Huang, J., Qin, Y., & Guo, X. (2013a). Chemical constituents of fine particulate air pollution and pulmonary function in healthy adults: The healthy volunteer natural relocation study. Journal of Hazardous Materials, 260, 183–191. https://doi.org/10.1016/j.jhazmat.2013.05.018.

    Article  CAS  Google Scholar 

  • Wu, W., Philip, A. B., & James, M. S. (2013b). Zinc ions as effectors of environmental oxidative lung injury. Free Radical Biology & Medicine, 65, 57–69. https://doi.org/10.1016/j.freeradbiomed.2013.05.048.

    Article  CAS  Google Scholar 

  • Xu, G., Yan, T., Peng, Q., Li, H., Wu, W., Yi, X., & Zhao, Y. (2021). Overexpression of the Lias gene attenuates hepatic steatosis in Leprdb/db mice. Journal of Endocrinology, 248(2), 119–131. https://doi.org/10.1530/JOE-19-0606.

    Article  CAS  Google Scholar 

  • Xu, L., Hiller, S., Simington, S., Nickeleit, V., Maeda, N., James, L. R., & Yi, X. (2016). Influence of different levels of lipoic acid synthase gene expression on diabetic nephropathy. PLoS One, 11(10): e0163208. https://doi.org/10.1371/journal.pone.0163208.

    Article  Google Scholar 

  • Yi, X., & Maeda, N. (2006). alpha-Lipoic acid prevents the increase in atherosclerosis induced by diabetes in apolipoprotein E-deficient mice fed high-fat/low-cholesterol diet. Diabetes, 55(8), 2238–2244. https://doi.org/10.2337/db06-0251.

    Article  CAS  Google Scholar 

  • Yi, X., Xu, L., Kim, K., Kim, H. S., & Maeda, N. (2010). Genetic reduction of α-lipoic acid production accelerates progression of atherosclerosis in apolipoprotein E deficient male mice. Atherosclerosis, 211(2), 424–430. https://doi.org/10.1016/j.atherosclerosis.2010.03.009.

    Article  CAS  Google Scholar 

  • Zhang, G., Jiang, F., Chen, Q., Yang, H., Zhou, N., Sun, L., Zou, P., Yang, W., Cao, J., Zhou, Z., & Ao, L. (2020). Associations of ambient air pollutant exposure with seminal plasma MDA, sperm mtDNA copy number, and mtDNA integrity. Environment International, 136, 105483. https://doi.org/10.1016/j.envint.2020.105483.

    Article  CAS  Google Scholar 

  • Zhao, Y., Xu, G., Li, H., Chang, M., Guan, Y., Li, Y., Wu, W., & Yao, S. (2020). Overexpression of endogenous lipoic acid synthase attenuates pulmonary fibrosis induced by crystalline silica in mice. Toxicology Letters, 323, 57–66. https://doi.org/10.1016/j.toxlet.2020.01.023.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the support of the Nature Science Foundation of Henan Provincial (222300420516), the National Natural Science Foundation of China (81703183, 81773399, 81573112), the International Cooperation and Exchange Project of NSFC (81961128031) and the Scientific and Technological Research Project of Henan Provincial (222102320325 and 212102310643).

Funding

This work was supported by grant 222300420516, 81703183, 81773399, 81573112, 81961128031, 222102320325 and 212102310643. Guangcui Xu has received research support from the Nature Science Foundation of Henan Provincial and the National Natural Science Foundation of China. Weidong Wu has received research support from the National Natural Science Foundation of China and International cooperation and exchange project of NSFC. Qiyu Gao and Zhen An have received research support from the Scientific and Technological Research Project of Henan Provincial.

Author information

Authors and Affiliations

Authors

Contributions

GX and WW designed this project and writing draft. GX, YT, CX, QG completed the experimental work. YZ, ZA performed software work and data curation. ML and FZ did animal housework.

Corresponding author

Correspondence to Weidong Wu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest relevant to this article.

Ethical approval

Animal care and use were in following the guidelines of the Animal Ethics Committee from Xinxiang Medical University (No. XYLL-2017086).

Consent to Participation

The subjects were mice in this study.

Consent for Publication

All authors consent to publish this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Zhao, Y., Tao, Y. et al. Lias overexpression alleviates pulmonary injury induced by fine particulate matter in mice. Environ Geochem Health 45, 6585–6603 (2023). https://doi.org/10.1007/s10653-023-01651-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01651-3

Keywords

Navigation