Skip to main content

Advertisement

Log in

Coupling hydrogeochemistry and stable isotopes (δ2H, δ18O and δ13C) to identify factors affecting arsenic enrichment of surface water and groundwater in Precambrian sedimentary rocks, eastern salt range, Punjab, Pakistan

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The study area is a part of the Salt Range, where water quality is being deteriorated by natural and anthropogenic sources. This research integrates water quality assessment, arsenic enrichment, hydrogeochemical processes, groundwater recharge and carbon sources in aquifer. Total dissolved solid (TDS) contents in springs water, lake water and groundwater are in range of 681–847 mg/L, 2460–5051 mg/L and 513–7491 mg/L, respectively. The higher concentrations of magnesium and calcium in water bodies next to sodium are because of carbonates, sulfates, halite and silicates dissolution. The average concentrations of ions in groundwater are in order of HCO3 > SO42− > Cl > Na+  > Mg2+ > Ca2+ > K+ > NO3, virtually analogous to springs water, but different from lake water, categorized as poor quality and unfit for drinking purposes. Based on major ions hydrochemistry, NaCl and mixed Ca–Mg–Cl type hydrochemical facies are associated with concentration of arsenic (4.2–39.5 µg/L) in groundwater. Groundwater samples (70%) having arsenic concentration (11 ≤ As ≤ 39.5 µg/L) exceeded from World Health Organization (WHO) guideline (As ≤ 10 µg/L) in near neutral to slightly alkaline (6.7 ≤ pH ≤ 8.3), positive Eh(6 ≤ Eh ≤ 204 mV), signifying its oxic condition. Eh–pH diagrams for arsenic and iron indicate that 80% of groundwater for arsenic and iron were in compartments of HAsO42− and Fe(OH)3, unveil oxic environment. Arsenic is moderately positive correlated with TDS, sodium, chloride, bicarbonate, nitrate, sulfate and weak negative with δ13CDIC in surface and groundwater, forecasting multiple sources of arsenic to aquifer. Stable isotopes of waters show recharge of groundwater from local rain and lake water. The lower δ13CDIC values of groundwater are modified by influx of CO2 produced during biological oxidation of soil natural organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

As:

Arsenic

Ca2+ :

Calcium

Cl :

Chloride

DIC:

Dissolved inorganic carbon

Eh:

Redox potential

Fe(OH)3 :

Iron(III) hydroxide

GW:

Groundwater

HAsO4 2 :

Hydrogen arsenate

HCl:

Hydrochloric acid

HCO3 :

Bicarbonate

K+ :

Potassium

KKL:

Kallar Kahar lake

mg/L:

Milligram per liter

Mg2+ :

Magnesium

mV:

Millivolt

Na+ :

Sodium

NO3 :

Nitrate

pH:

Potential of hydrogen

SO4 2 :

Sulfate

SW:

Spring water

SI:

Saturation indices

TDS:

Total dissolved solids

TH:

Total hardness

VPDB:

Vienna peedee belemnite

VSMOW:

Vienna standard mean ocean water

WHO:

World Health Organization

µg/L:

Microgram per liter

‰:

Permil

References

  • Abu-Alnaeem, M. F., Yusoff, I., Ng, T. F., Alias, Y., & Raksme, M. (2018). Assessment of groundwater salinity and quality in Gaza coastal aquifer, Gaza Strip, Palestine: An integrated statistical, geostatistical and hydrogeochemical approaches study. Science of the Total Environment, 615, 972–989. https://doi.org/10.1016/j.scitotenv.2017.09.320

    Article  CAS  Google Scholar 

  • Addy, S. E. A. (2008). Electrochemical arsenic remediation for rural Bangladesh (p. 69). Berkeley: University of California.

    Book  Google Scholar 

  • Aghazadeh, N., Chitsazan, M., & Golestan, Y. (2016). Hydrochemistry and quality assessment of groundwater in the Ardabil area, Iran. Applied Water Science, 7, 3599–3616. https://doi.org/10.1007/s13201-016-0498-9

    Article  CAS  Google Scholar 

  • Akbar, M., Khan, S. A., Dilawar, S., & Hassan, M. T. (2021). Water crisis in Pakistan: Prospects and implications. PalArch’s Journal of Archaeology of Egypt/ Egyptology (PJAEE), 18(1), 4884–4892.

    Google Scholar 

  • Akhtar, M. M., Tang, Z., & Mohamadi, B. (2014). Contamination potential assessment of potable groundwater in Lahore, Pakistan. Polish Journal of Environmental Studies, 23(6), 1905–1916.

    CAS  Google Scholar 

  • Ali, K. F., & De Boer, D. H. (2007). Spatial patterns and variation of suspended sediment yield in the upper Indus River basin, Northern Pakistan. Journal of Hydrology, 334, 368–387. https://doi.org/10.1016/j.jhydrol.2006.10.013

    Article  Google Scholar 

  • Ali, W., Mushtaq, N., Javed, T., Zhang, H., Ali, K., Rasool, A., & Farooqi, A. (2019). Vertical mixing with return irrigation water the cause of arsenic enrichment in groundwater of district Larkana Sindh, Pakistan. Environmental Pollution, 245, 77–88. https://doi.org/10.1016/j.envpol.2018.10.103

    Article  CAS  Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). American Public Health Association/American Water Works Association/Water Environment Federation.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (1999). Geochemistry, groundwater and pollution. Rotterdam: A. A. Balkema. 536.

  • Appelo, C. A. J., Van der Weiden, M. J. J., Tournassat, C., & Charlet, L. (2002). Surface complexation of ferrous iron and carbonate on ferrohydrite and the mobilization of arsenic. Environmental Science and Technology, 36, 3096–103. https://doi.org/10.1021/es010130n

    Article  CAS  Google Scholar 

  • Arshad, M. (2011). Site management plan, Kallar Kahar Game Reserve, WWF, Wetlands, The Ministry of Environment’s Pakistan Wetlands Programme. PWP-The Ministry of Environment’s Pakistan Wetlands Programme House, Islamabad.

  • Atekwana, E. A., Molwalefhe, L., Kgaodi, O., & Cruse, A. M. (2016). Effect of evapotranspiration on dissolved inorganic carbon and stable carbon isotopic evolution in rivers in semiarid climates: The Okavango Delta in North West Botswana. Journal of Hydrology: Regional Studies, 7, 1–13. https://doi.org/10.1016/j.ejrh.2016.05.003

    Article  Google Scholar 

  • Azizullah, A., Khattak, M. N. K., Richter, P., & Häder, D. P. (2011). Water pollution in Pakistan and its impact on public health: A review. Environment International, 37, 479–497. https://doi.org/10.1016/j.envint.2010.10.007

    Article  CAS  Google Scholar 

  • Baig, J. A., Kazi, T. G., Shah, A. Q., Afridi, H. I., Kandhro, G. A., Khan, S., Kolachi, N. F., Wadhwa, S. K., Shah, F., & Arain, M. B. (2011). Evaluation of arsenic levels in grain crops samples, irrigated by tube well and canal water. Food and Chemical Toxicology, 49, 265–270. https://doi.org/10.1016/j.fct.2010.11.002

    Article  CAS  Google Scholar 

  • Baker, D. M., Lillie, R. J., Yeats, R. S., Johnson, G. D., Yousuf, M., & Zamin, A. S. H. (1988). Development of the Himalayan frontal thrust zone-Salt Range, Pakistan. Geology, 16, 3–7.

    Article  Google Scholar 

  • Bauer, M., & Blodau, C. (2006). Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Science of the Total Environment, 354, 179–190. https://doi.org/10.1016/j.scitotenv.2005.01.027

    Article  CAS  Google Scholar 

  • Bhateria, R., & Jain, D. (2016). Water quality assessment of lake water: A review. Sustainable Water Resources Management, 2, 161–173. https://doi.org/10.1007/s40899-015-0014-7

    Article  Google Scholar 

  • Bhattacharya, P., Welch, A. H., Stollenwerk, K. G., McLaughlin, M. J., Bundschuh, J., & Panaullah, G. (2007). Arsenic in the environment: Biology and Chemistry. Science of the Total Environment, 379, 109–120. https://doi.org/10.1016/j.scitotenv.2007.02.037

    Article  CAS  Google Scholar 

  • Bibi, M., Hashmi, M. Z., & Malik, R. N. (2015). Human exposure to arsenic in groundwater from Lahore District, Pakistan. Environmental Toxicology and Pharmacology, 39, 42–52. https://doi.org/10.1016/j.etap.2014.10.020

    Article  CAS  Google Scholar 

  • Bilal, S., Rais, M., Anwar, M., Hussain, I., Sharif, M., & Kabeer, B. (2013). Habitat association of Little Grebe (Tachybaptus ruficollis) at Kallar Kahar Lake, Pakistan. Journal of King Saud University- Science, 25, 267–270. https://doi.org/10.1016/j.jksus.2013.03.001

    Article  Google Scholar 

  • Boerner, A. R., & Gates, J. B. (2015). Temporal dynamics of ground water-dissolved inorganic carbon beneath a drought-affected braided stream: Platte River case study. Journal of Geophysical Research-Biogeoscience, 120, 924–937.

    Article  Google Scholar 

  • Brindha, K., Paul, R., Walter, J., Tan, M. L., & Singh, M. K. (2020). Trace metals contamination in groundwater and implications on human health: Comprehensive assessment using hydrogeochemical and geostatistical methods. Environmental Geochemical and Health, 42, 3819–3839. https://doi.org/10.1007/s10653-020-00637-9

    Article  CAS  Google Scholar 

  • Butler, R. W. H., Coward, M. P., Harwood, G. M., & Knipe, J. (1987). Salt, its control on thrust geometry, structural style and gravitational collapse along the Himalayan mountain front in the Salt Range of Northern Pakistan. In I. Lerche & J. J. O’Brien (Eds.), Dynamical geology of salt and related structures (pp. 339–418). Academic Press.

    Chapter  Google Scholar 

  • Cheung, J. S. J., Hu, X. F., Parajuli, R. P., Rosol, R., Torng, A., Mohapatra, A., Lye, A., & Chan, H. M. (2020). Health risk assessment of arsenic exposure among the residents in Ndilǫ, Dettah, and Yellowknife, Northwest Territories, Canada. International Journal of Hygiene and Environmental Health, 230, 113623. https://doi.org/10.1016/j.ijheh.2020.113623

    Article  CAS  Google Scholar 

  • Clark, I. D., & Fritz, P. (1997). Environmental Isotopes in Hydrogeology. Lewis Publishers.

    Google Scholar 

  • Coleman, M. L., Shepherd, T. J., Durham, J. J., Rouse, J. E., & Moore, G. R. (1982). Reduction of water with zinc for hydrogen isotope analysis. Analytical Chemistry, 54, 993–995. https://doi.org/10.1021/ac00243a035

    Article  CAS  Google Scholar 

  • Corniello, A., Guida, M., Stellato, L., Trifuoggi, T., Carraturo, F., Gaudio, C. D., Forte, G., Giarra, A., Iorio, M., Marzaioli, F., & Toscanesi, M. (2021). Hydrochemical, isotopic and microbiota characterization of telese mineral waters (Southern Italy). Environmental Geochemistry & Health. https://doi.org/10.1007/s10653-021-00806-4

    Article  Google Scholar 

  • Cotovicz, L. C., Jr., Knoppers, B. A., Deirmendjian, L., & Abril, G. (2019). Sources and sinks of dissolved inorganic carbon in an urban tropical coastal bay revealed by δ13C-DIC signals. Estuarine, Coastal and Shelf Science, 220, 185–195. https://doi.org/10.1016/j.ecss.2019.02.048

    Article  CAS  Google Scholar 

  • Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133, 1702–1703. https://doi.org/10.1126/science.133.3465.1702

    Article  CAS  Google Scholar 

  • Cuoco, E., Viaroli, S., Paolucci, V., Mazza, R., & Tedesco, D. (2021). Fe and As geochemical self-removal dynamics in mineral waters: Evidence from the Ferrarelle groundwater system (Riardo Plain Southern Italy). Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-021-00891-5

    Article  Google Scholar 

  • Datta, P. S., & Tyagi, S. K. (1996). Major ion chemistry of groundwater in Delhi area: Chemical weathering processes and groundwater flow regime. Journal of Geological Society of India, 47, 179–188.

    CAS  Google Scholar 

  • Deen, S. (2015). Pakistan 2010 floods. Policy gaps in disaster preparedness and response. International Journal of Disaster Risk Reduction, 12, 341–349. https://doi.org/10.1016/j.ijdrr.2015.03.007

    Article  Google Scholar 

  • Deirmendjian, L., & Abril, G. (2018). Carbon dioxide degassing at the groundwater-stream-atmosphere interface: isotopic equilibration and hydrological mass balance in a sandy watershed. Journal of Hydrology, 558, 129–143. https://doi.org/10.1016/j.jhydrol.2018.01.003

    Article  CAS  Google Scholar 

  • Deirmendjian, L., Loustau, D., Augusto, L., Lafont, S., Chipeaux, C., Poirier, D., & Abril, G. (2018). Hydro-ecological controls on dissolved carbon dynamics in groundwater and export to streams in a temperate Pine forest. Biogeosciences, 15, 669–691. https://doi.org/10.5194/bg-15-669-2018

    Article  CAS  Google Scholar 

  • Delkhahi, B., Nassery, H. R., Vilarrasa, V., Alijani, F., & Ayora, C. (2020). Impacts of natural CO2 leakage on groundwater chemistry of aquifers from the Hamadan Province, Iran. International Journal of Greenhouse Gas Control, 96, 103001. https://doi.org/10.1016/j.ijggc.2020.103001

    Article  CAS  Google Scholar 

  • Deshpande, R. D., Bhattacharya, S. K., Jani, R. A., & Gupta, S. K. (2003). Distribution of oxygen and hydrogen isotopes in shallow groundwaters from Southern India: Influence of a dual monsoon system. Journal of Hydrology, 271, 226–239. https://doi.org/10.1016/S0022-1694(02)00354-2

    Article  CAS  Google Scholar 

  • DeVore, C. L., Rodriguez-Freire, L., Mehdi-Ali, A., Ducheneaux, C., Artyushkova, K., Zhou, Z., Latta, D. E., Lueth, V. W., Gonzales, M., Lewis, J., & Cerrato, J. M. (2019). Effect of bicarbonate and phosphate on arsenic release from mining-impacted sediments in the Cheyenne River watershed, South Dakota, USA. Environmental Science: Process & Impacts, 21(3), 456–468. https://doi.org/10.1039/C8EM00461G

    Article  CAS  Google Scholar 

  • Ding, L., Yang, Q., Yang, Q., Yang, Y., Ma, H., Delgad, J., & Martin, J. D. (2021). Potential risk assessment of groundwater to address the agricultural and domestic challenges in Ordos Basin. Environmental Geochemistry and Health, 43, 717–732. https://doi.org/10.1007/s10653-019-00512-2

    Article  CAS  Google Scholar 

  • Dinka, M. O., Loiskandl, W., & Ndambuki, J. M. (2015). Hydrochemical characterization of various surface water and groundwater resources available in Matahara areas, Fantalle Woreda of Oromiya region. Journal of Hydrology: Regional Studies, 3(2015), 444–456. https://doi.org/10.1016/j.ejrh.2015.02.007

    Article  Google Scholar 

  • Domenico, P. A., & Schwartz, F. W. (1990). Physical and chemical hydrogeology (p. 824). Wiley.

    Google Scholar 

  • Drever, J. I. (1997). The geochemistry of natural waters (3rd ed., p. 436). Prentice Hall.

    Google Scholar 

  • El-Aassy, I. K., El-Feky, M. G., Issa, F. A., Ibrahim, N. M., Desouky, O. A., & Khattab, M. R. (2015). Characterization of groundwater and uranium isotopic ratios (234U/238U) in some Dugged and drilled wells from southwestern Sinai Egypt. Water Utility Journal, 9, 19–30.

    Google Scholar 

  • Epstein, S., & Mayeda, T. (1953). Variation of O-18 content of waters from natural sources. Geochimica Et Cosmochimica Acta, 4(5), 213–224. https://doi.org/10.1016/0016-7037(53)90051-9

    Article  CAS  Google Scholar 

  • Fang, J., Barcelona, M. J., Krishnamurthy, R. V., & Atekwana, E. A. (2000). Stable carbon isotope biogeochemistry of a shallow sand aquifer contaminated with fuel hydrocarbons. Applied Geochemistry, 15, 157–169. https://doi.org/10.1007/s10498-008-9033-4

    Article  CAS  Google Scholar 

  • Farooqi, A., Masuda, H., & Firdous, N. (2007). Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur Districts, Punjab, Pakistan and possible contaminant sources. Environmental Pollution, 145, 839–849. https://doi.org/10.1016/j.envpol.2006.05.007

    Article  CAS  Google Scholar 

  • Favara, R., Grassa, F., Inguaggiato, S., Pecoraino, G., & Capasso, G. (2002). A simple method to determine the δ13C content of total dissolved inorganic carbon. Geofísica Internacional, 41(3), 313–320.

    CAS  Google Scholar 

  • Florkowski, T. (1985). Sample preparation for hydrogen isotope analysis by mass spectrometry. International Journal of Applied Radiation and Isotopes, 36(12), 991–992.

    Article  CAS  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater (p. 07632). Prentice-Hall Inc.

    Google Scholar 

  • Garcia, G., Hidalgo, V., & Blesa, A. (2001). Geochemistry of groundwater in alluvial plain of Tucuman province. Argentina. Hydrogeology Journal, 9, 597–610. https://doi.org/10.1007/S10040-001-0166-4

    Article  CAS  Google Scholar 

  • Gat, J. R. (1971). Comments on the stable isotope method in regional groundwater investigations. Water Resource Research, 7, 980–993. https://doi.org/10.1029/WR007i004p00980

    Article  CAS  Google Scholar 

  • Gee, E. R. (1989). Overview of the geology and structure of the Salt Range, with observations on related areas of Northern Pakistan. In L. L. Malinconico Jr. & R. J. Lillie (Eds.), Tectonics of the western Himalayas (Vol. 232, pp. 95–111). Geological Society of America.

    Chapter  Google Scholar 

  • Ghoraba, S. M., & Khan, A. D. (2013). Hydrochemistry and groundwater quality assessment in Balochistan Province, Pakistan. International Journal of Recent Research and Applied Studies, 17(2), 185–199.

    CAS  Google Scholar 

  • Gibson, J. J., Edwards, T. W. D., Birks, S. J., St Amour, N. A., Buhay, W. M., McEachern, P., Wolfe, B. B., & Peters, D. L. (2005). Progress in isotope tracer hydrology in Canada. Hydrological Processes, 19, 303–327. https://doi.org/10.1002/hyp.5766

    Article  CAS  Google Scholar 

  • Giordano, M. (2009). Global groundwater, issues and solutions. Annual Review of Environmental and Resources, 1, 153–178. https://doi.org/10.1146/annurev.environ.030308.100251

    Article  Google Scholar 

  • Glover, E. T., & Osae, S. (2012). Major ion chemistry and identification of hydrogeochemical processes of groundwater in the Accra Plains. Elixir Geoscience, 50, 10279–10288. https://doi.org/10.15406/mojes.2016.01.00008

    Article  Google Scholar 

  • Gonfiantini, R., & Zuppi, G. M. (2003). Carbon isotope exchange rate of DIC in karst groundwater. Chemical Geology, 197, 319–336. https://doi.org/10.1016/S0009-2541(02)00402-3

    Article  CAS  Google Scholar 

  • GOP, (2008). Government of Pakistan, Pakistan Environmental Protection Agency (PEPA), (Ministry of Environment) National Standards for Drinking Water Quality (NSDWG).

  • Gul, N., Shah, M. T., Khan, S., Khattak, N. U., & Muhammad, S. (2015). Arsenic and heavy metals contamination, risk assessment and their source in drinking water of the Mardan District, Khyber Pakhtunkhwa. Pakistan. Journal of Water and Health, 13(4), 1073–1084. https://doi.org/10.2166/wh.2015.011

    Article  Google Scholar 

  • Guo, Q., Zhang, J., Hu, Z., & Zhou, Z. (2020). Hydrochemical and isotopic evolution of groundwater flowing downstream of the Daqing River (Liaodong Bay, China). Journal of Coastal Research, 36(3), 608–618. https://doi.org/10.2112/JCOASTRES-D-19-00114.1

    Article  CAS  Google Scholar 

  • Guo, X., Zuo, R., Wang, J., Meng, L., Teng, Y., Shi, R., Gao, X., & Ding, F. (2018). Hydrochemical evolution of interaction between surface water and groundwater affected by exploitation. Groundwater. https://doi.org/10.1155/2016/5464373

    Article  Google Scholar 

  • Han, D., & Currell, M. J. (2018). Delineating multiple salinization processes in a coastal plain aquifer, northern China: Hydrochemical and isotopic evidence. Hydrology and Earth System Science, 22, 3473–3491. https://doi.org/10.5194/hess-22-3473-2018

    Article  CAS  Google Scholar 

  • He, X., Li, P., Wu, J., Wei, M., Ren, X., & Wang, D. (2021). Poor groundwater quality and high potential health risks in the Datong Basin, Northern China: Research from published data. Environmental Geochemistry & Health, 2021(43), 791–812. https://doi.org/10.1007/s10653-020-00520-7

    Article  CAS  Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water; Third Edition, US, Geological Survey Water-Supply Paper 2254.

  • Herath, I., Vithanage, M., Bundschuh, J., Maity, J., & Bhattacharya, P. (2016). Natural arsenic in global groundwaters: Distribution and Geochemical Triggers for Mobilization. Current Pollution Reports, 2, 68–89. https://doi.org/10.1007/s40726-016-0028-2

    Article  CAS  Google Scholar 

  • Herczeg, L., & Edmunds, M. (1999). Inorganic ions as tracers. In G. Cook & L. Herczeg (Eds.), Environmental tracers in subsurface hydrology (pp. 31–77). Kluwer.

    Google Scholar 

  • Hosono, T., Wang, C. H., Umezawa, Y., Nakano, T., Onodera, S., Nagata, T., Yoshimizu, C., Tayasu, I., & Taniguchi, M. (2011). Multiple isotope (H, O, N, S and Sr) approach elucidates complex pollution causes in the shallow groundwaters of the Taipei urban area. Journal of Hydrology, 397, 23–36. https://doi.org/10.1016/j.jhydrol.2010.11.025

    Article  CAS  Google Scholar 

  • Hussain, S. A., Han, F.-Q., Ma, Z., Hussain, A., Mughal, M. S., Han, J., Alhassan, A., & Widory, D. (2021). Unraveling sources and climate conditions prevailing during the deposition of neoproterozoic evaporites using coupled chemistry and boron isotope compositions (δ11B): The example of the salt range, Punjab. Pakistan. Minerals, 11, 161. https://doi.org/10.3390/min11020161

    Article  CAS  Google Scholar 

  • Hussain, S., Noreen, A., Younas, T., Khan, I., Aziz, H., Rehman, E-ur., Saleem, A., Imam, M. F., & Saeed, A. (2022). Cropping pattern to cope with climate change scenario in Pakistan. Bioscience Research 19(2): 957–963.

  • Hussain, S., Xianfang, S., Hussain, I., Jianrong, L., Mei, H. D., Hu, Y. L., & Huang, W. (2015). Controlling factors of the stable isotope composition in the precipitation of Islamabad Pakistan. Advances in Meteorology. https://doi.org/10.1155/2015/817513

    Article  Google Scholar 

  • IAEA, (2008). Atlas of isotope hydrology, Asia and the Pacific, Water Resources Programme STI/PUB/1364.

  • IARC, (2004). Monographs on the evaluation of carcinogenic risks to humans. Volume 84 (Some Drinking-Water Disinfectants and Contaminants, including Arsenic). Lyon, France. International Agency for Research on Cancer.

  • Ibrahim, R. G., Ali, M. E., Abdel Satar, Y. M., Sabaa, M., & Ezzat, H. (2021). Ionic ratios as tracers to assess seawater intrusion and to identify salinity sources in Ras Sudr Coastal Aquifer, South West Sinai Egypt. Current Science International, 10(4), 599–622. https://doi.org/10.36632/csi/2021.10.4.51

    Article  Google Scholar 

  • Iqbal, S. Z. (2001). Arsenic contamination in Pakistan. Presentation at a UN-ESCAP meeting, Geology and Health: Solving the Arsenic Crisis in the Asia-Pacific Region; UNESCAP, Bangkok, May 2001.

  • Iqbal, F., Raza, N., Ali, M., & Athar, M. (2006). Contamination of Kallar Kahar Lake by inorganic elements and heavy metals and their temporal variations. Journal of Applied Sciences and Environmental Management, 10(2), 95–98. https://doi.org/10.4314/jasem.v10i2.43675

    Article  Google Scholar 

  • Isa, N. M., Aris, A. Z., Lim, W. Y., Azmin, W. N., Sulaiman, W. N. A. W., & Praveena, S. M. (2013). Evaluation of heavy metal contamination in groundwater samples from Kapas Island Terengganu Malaysia. Arabian Journal of Geoscience. https://doi.org/10.1007/s12517-012-0818-9

    Article  Google Scholar 

  • Jabeen, A., Huang, X., & Aamir, M. (2015). The challenges of water pollution, threat to public health, flaws of water laws and policies in Pakistan. Journal of Water Resource and Protection, 2015(7), 1516–1526.

    Article  Google Scholar 

  • Jain, C. K., & Ali, I. (2000). Arsenic: occurrence, toxicity and speciation techniques. Water research, 34(17), 4304–4312. https://doi.org/10.1016/S0043-1354(00)00182-2

    Article  CAS  Google Scholar 

  • Jalal, F. N., & Sanalkumar MG,. (2012). Hydrology and water quality assessment of Achencovil River in Relation to Pilgrimage Season. International Journal of Scientific and Research Publications, 2(12), 1–5.

    Google Scholar 

  • Javed, T., Ahmad, N., Mashiatullah, A., & Khan, K. (2021). Chronological record, source identification and ecotoxicological impact assessment of heavy metals in sediments of Kallar Kahar Lake, Salt Range-Punjab, Pakistan. Environmental Earth Sciences, 80, 546. https://doi.org/10.1007/s12665-021-09764-7

    Article  CAS  Google Scholar 

  • Kale, V. S. (2016). Consequence of temperature, pH, turbidity and dissolved oxygen water quality parameters. International Advanced Research Journal in Science Engineering and Technology, 3(8), 186–186.

    Google Scholar 

  • Karberg, N. J., Pregitzer, S., King, S. J., Friend, A. L., & Wood, J. R. (2005). Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone. Oecologia, 142, 296–306. https://doi.org/10.1007/s00442-004-1665-5

    Article  CAS  Google Scholar 

  • Karim, A., & Veizer, V. (2000). Weathering processes in the Indus River Basin: Implications from riverine carbon, sulfur, oxygen, and strontium isotopes. Chemical Geology, 170, 153–177. https://doi.org/10.1016/S0009-2541(99)00246-6

    Article  CAS  Google Scholar 

  • Karunanidhi, D., Aravinthasamy, P., Deepali, M., Subramani, T., & Sunkari, E. D. (2021). Appraisal of subsurface hydrogeochemical processes in a geologically heterogeneous semi-arid region of south India based on mass transfer and fuzzy comprehensive modeling. Environmental Geochemistry & Health, 2021(43), 1009–1028. https://doi.org/10.1007/s10653-020-00676-2

    Article  CAS  Google Scholar 

  • Keesari, T., & Dauji, S. (2021). Groundwater salinization processes: Pitfalls of inferences from Na+/Cl versus Cl correlation plots. Environmental Geochemistry & Health, 2021(43), 949–969. https://doi.org/10.1007/s10653-020-00622-2

    Article  CAS  Google Scholar 

  • Khan, A. F., Srinivasamoorthy, K., Prakash, R., & Rabina, C. (2021). Hydrochemical and statistical techniques to decode groundwater geochemical interactions and saline water intrusion along the coastal regions of Tamil Nadu and Puducherry, India. Environmental Geochemistry & Health, 43, 1051–1067. https://doi.org/10.1007/s10653-020-00713-0

    Article  CAS  Google Scholar 

  • Khan, K., Ikram, M., Faridi, R., Amjad, R., & Chaudhary, M. N. (2015). Perils of eutrophication and spatio-temporal dynamics of Lake Kalar Kahar, Potohar Pleatue, Salt Range, Pakistan. Science International (lahore), 27(3), 3341–3346.

    Google Scholar 

  • Khan, M. S., Aadil, N., & Khan, K. (2011). Assessment of environmental degradation of Kalar Kahar Lake, Salt Range, Pakistan due to anthropogenic activities and its remedial measures. Indian Journal of Science and Technology, 4(10), 1252–1255.

    Article  CAS  Google Scholar 

  • Khan, S., & Shah, M. M. (2019). Multiphase dolomitization in the Jutana Formation (Cambrian), Salt Range (Pakistan): Evidences from field observations, microscopic studies and isotopic analysis. Geologica Acta, 17(2), 1–18. https://doi.org/10.1344/GeologicaActa2019.17.2

    Article  CAS  Google Scholar 

  • Kim, K., Rajmohan, N., Kim, H. J., Kim, S. H., Hwang, G. S., Yun, S. T., Gu, B., Cho, M. J., & Lee, S. H. (2005). Evaluation of geochemical processes affecting groundwater chemistry based on mass balance approach: A case study in Namwon, Korea. Geochemical Journal, 39, 357–369. https://doi.org/10.25073/2588-1094/vnuees.4693

    Article  CAS  Google Scholar 

  • Kim, Y., Lee, K. S., Koh, D. C., Lee, D. H., Lee, S. G., Park, W. B., Koh, G. W., & Woo, N. C. (2003). Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: A case study in Jeju volcanic Island, Korea. Journal of Hydrology, 270, 282–294. https://doi.org/10.1016/S0022-1694(02)00307-4

    Article  CAS  Google Scholar 

  • Klein, L. (1973). River pollution-causes and effects (Vol. 2). Butter-worth and Co. Ltd.

    Google Scholar 

  • Kohfahl, C., Sprenger, C., Herrera, B. J., Meyer, H., Chacόn, F. F., & Pekdeger, A. (2008). Recharge sources and hydrogeochemical evolution of groundwater in Semi-Arid and karstic environments: A field study in the Granada Basin (Southern Spain). Applied Geochemistry, 23, 846–862. https://doi.org/10.1016/j.apgeochem.2007.09.009

    Article  CAS  Google Scholar 

  • Korte, N. E., & Fernando, Q. (1991). A Review of arsenic(III) in groundwater. Critical Reviews in Environmental Control, 21, 1–39. https://doi.org/10.1080/10643389109388408

    Article  CAS  Google Scholar 

  • Kousa, A., Havulinna, A. S., Moltchanova, E., Taskinen, O., Nikkarinen, M., Eriksson, J., & Karvonen, M. (2006). Calcium: Magnesium ratio in local groundwater and incidence of Acute Myocardial Infarction among Males in Rural Finland. Environmental Health Perspectives, 114(5), 730–734. https://doi.org/10.1289/ehp.8438

    Article  CAS  Google Scholar 

  • Lachlan, R., Fred, J., Stephen, C. A., & Clare, K. R. (2021). Deformation recorded in polyhalite from evaporite detachments revealed by 40Ar/39Ar dating. Geochronology. https://doi.org/10.5194/gchron-2021-16

  • Langmuir, D. (1997). Aqueous environmental geochemistry (p. 600). Prentice-Hall.

    Google Scholar 

  • Ledesma-Ruiz, R., Pastén-Zapata, E., Parra, R., Harter, T., & Mahlknecht, J. (2015). Investigation of the geochemical evolution of groundwater under agricultural land: A case study in Northeastern Mexico. Journal of Hydrology, 521, 410–423. https://doi.org/10.1016/j.jhydrol.2014.12.026

    Article  CAS  Google Scholar 

  • Lee, K. S., Wenner, D. B., & Lee, I. (1999). Using H and O isotopic data for estimating the relative contributions of rainy and dry season precipitation to groundwater: Example from Cheju Island, Korea. Journal of Hydrology, 222, 65–74. https://doi.org/10.1016/S0022-1694(99)00099-2

    Article  CAS  Google Scholar 

  • Li, P., Wu, J., & Qian, H. (2013). Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China. Environmental Earth Science, 69, 2211–2225. https://doi.org/10.1007/s12665-012-2049-5

    Article  CAS  Google Scholar 

  • Li, P., Wu, J., Qian, H., Lyu, X., & Liu, H. (2013). Origin and assessment of groundwater pollution and associated health risk: a case study in an industrial park, Northwest China. Environmental Geochemistry and Health, 36(4), 693–712.

    Article  Google Scholar 

  • Li, S.-L., Liu, C.-Q., Tao, F.-X., Lang, Y.-C., & Han, G.-L. (2005). Carbon biogeochemistry of groundwater, Guiyang Southwest China. Groundwater, 43(4), 494–499. https://doi.org/10.1111/j.1745-6584.2005.0036.x

    Article  CAS  Google Scholar 

  • Li, X., Liu, W., & Xu, L. (2012). Carbon isotopes in surface-sediment carbonates of modern Lake Qinghai (Qinghai-Tibet Plateau): Implications for lake evolution in arid areas. Chemical Geology, 300–301, 88–96.

    Article  Google Scholar 

  • Li, X., Sha, J., & Wang, Z.-L. (2017). Chlorophyll-A prediction of lakes with different water quality patterns in China Based on Hybrid Neural Networks. Water, 9(524), 1–9. https://doi.org/10.3390/w9070524

    Article  CAS  Google Scholar 

  • Li, X., Wu, H., Qian, H., & Gao, Y. (2018). Groundwater chemistry regulated by Hydrochemical Processes and Geological Structures: A Case Study in Tongchuan, China. Water, 10, 338. https://doi.org/10.3390/w10030338

    Article  CAS  Google Scholar 

  • Liang, Z., Chen, J., Jiang, T., Li, K., Gao, L., Wang, Z., Li, S., & Xie, Z. (2018). Identification of the dominant hydrogeochemical processes and characterization of potential contaminants in groundwater in Qingyuan, China, by multivariate statistical analysis. Royal Society of Chemistry Advances, 8, 33243–33255. https://doi.org/10.1039/C8RA06051G

    Article  CAS  Google Scholar 

  • Lodh, R., Paul, R., Karmakar, B., & Das, M. K. (2014). Physicochemical studies of water quality with special reference to ancient lakes of Udaipur City, Tripura, India. International Journal of Scientific and Research Publications, 4(6), 2250–3153.

    Google Scholar 

  • Lu, Y., Tang, C., Cheng, J., & Chen, J. (2015). Groundwater recharge and hydrogeochemical evolution in Leizhou Peninsula, China. Journal of chemistry. https://doi.org/10.1155/2015/427579

    Article  Google Scholar 

  • Lyon, W. B., Leslie, D. L., Harmon, R. S., Neumann, K., Welch, K. A., Bisson, K. M., & Mcknight, D. M. (2013). The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica. Applied Geochemistry, 32, 26–36. https://doi.org/10.1016/j.apgeochem.2012.08.019

    Article  CAS  Google Scholar 

  • Ma, R., Shi, J., Liu, J., & Gui, C. (2014). Combined use of multivariate statistical analysis and hydrochemical analysis for groundwater quality evolution: A case study in north chain plain. Journal of Earth Science, 25(3), 587–597. https://doi.org/10.1007/s12583-014-0446-2

    Article  CAS  Google Scholar 

  • Malana, M. A., & Khosa, M. A. (2011). Groundwater pollution with special focus on arsenic, Dera Ghazi Khan-Pakistan. Journal of Saudi Chemical Society, 15, 39–47. https://doi.org/10.1016/j.jscs.2010.09.009

    Article  CAS  Google Scholar 

  • Mallick, J., Singh, C. K., Al-Mesfer, M. K., Kumar, A., Khan, R. A., Islam, S., & Rahman, A. (2018). Hydro-geochemical assessment of groundwater quality in Aseer Region Saudi Arabia. Water, 10, 1847. https://doi.org/10.3390/w10121847

    Article  CAS  Google Scholar 

  • Manzoor, M., Bibi, S., Manzoor, M., & Jabeen, R. (2013). Historical analysis of flood information and impacts assessment and associated response in Pakistan (1947–2011). Research Journal of Environmental and Earth Sciences, 5(3), 139–146.

    Article  Google Scholar 

  • Maqbool, N. (2022). Water crisis in Pakistan: Manifestation, causes and the way forward. Pakistan Institute of Development Economics, 2022(60), 1–8.

    Google Scholar 

  • McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., Mishra, R., Purohit, R., Ravenscroft, P., Cronin, A., Howarth, R. J., Chatterjee, A., Talukder, T., Lowry, D., Houghton, S., & Chadha, D. K. (2004). Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: The example of West Bengal and its worldwide implications. Applied Geochemistry, 19(8), 1255–1293. https://doi.org/10.1016/j.apgeochem.2004.02.001

    Article  CAS  Google Scholar 

  • McMahon, P. B., Cowdery, T. K., Chapelle, F. H., & Jurgens, B. C. (2009). Redox conditions in selected principal aquifers of the United States: U.S. Geological Survey Fact Sheet 2009–3041, 6 p. https://doi.org/10.3133/fs20093041.

  • McCrea, J. M. (1950). On the isotopic chemistry of carbonates and a paleo-temperature scale. Journal of Chemical Physics, 18, 849–857. https://doi.org/10.1063/1.1747785

    Article  CAS  Google Scholar 

  • Mehrdadi, N., Baghvand, A., Etemadi, H., Razmkhah, N., & Bidhendi, M. E. (2009). Chemical analysis of groundwaters in Tabriz area. Northwestern Iran. Asian Journal of Chemistry, 21(2), 1217–1224.

    CAS  Google Scholar 

  • Merke, B. J., & Planner-Friendfrich, B. (2008). Groundwater Geochemistry: A practical guide to modeling of natural and contaminated aquatic systems. In D. Kirk (Ed.), Nordstrom (2nd ed.). Springer.

    Google Scholar 

  • Mohamed, C., & Zineb, A. (2015). Geochemistry and hydrogeochemical process of groundwater in Soulf Valley of low Septentrional Sahar, Algeria. African Journal of Environmental Science and Technology, 9(3), 261–273.

    Article  Google Scholar 

  • Mook, W. G., & de Vries, J. J. (2001). Environmental Isotopes in the Hydrogeological Cycle: Principles and Application, Volume I: Introduction, Theory, Methods, Review, Vienna, Austria and Paris, France.

  • Mook, W. G., Bommerson, J. C., & Staverman, W. H. (1974). Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters, 22, 169–176.

    Article  CAS  Google Scholar 

  • Mueller, B. (2017). Arsenic in groundwater in the southern lowlands of Nepal and its mitigation options: A review. Environmental Reviews, 25, 296–305. https://doi.org/10.1139/er-2016-0068

    Article  CAS  Google Scholar 

  • Munir, M., Qureshi, R., Arshad, M., Chaudhary, A. K., & Leghari, M. K. (2012). Taxonomic study of bacillariophyta from Kallar Kahar Lake Chakwal, Punjab, Pakistan. Pakistan Journal Botany, 44(5), 1805–1814.

    Google Scholar 

  • Mushtaq, N., Younas, A. M., Mashiatullah, A., Javed, T., Ahmad, A., & Farooqi, A. (2018). Hydrogeochemical and isotopic evaluation of groundwater with elevated arsenic in alkaline aquifers in Eastern Punjab, Pakistan. Chemosphere, 200, 576–586.

    Article  CAS  Google Scholar 

  • Narany, T. S., Ramali, M. F., Aris, A. Z., Azmin, W. N. A., Juahir, H., & Fakharian, K. (2014). Identification of the hydrogeochemical processes in groundwater using classic integrated geochemical methods and geostatistical techniques, in Amol-Babol Plain Iran. The Scientific World Journal, 2014, 1–14.

    Article  Google Scholar 

  • Naseem, S., Hamza, S., & Bashir, E. (2010). Groundwater Geochemistry of Winder Agricultural Forms, Balochistan, Pakistan and assessment for irrigation quality. European Water, 31, 21–32.

    Google Scholar 

  • Nawale, V. P., Yenkie, M. K. N., & Malpe, D. B. (2016). Physicochemical characteristics of groundwater in Wardha sub basin Mahashtra, India. International Journal of Innovative Research in Science, Engineering and technology, 5(6), 2347–6710. https://doi.org/10.15680/IJIRSET.2016.0506098

    Article  Google Scholar 

  • Neil, C. W., Yang, Y. J., Schupp, D., & Jun, Y.-S. (2014). Water chemistry impacts on arsenic mobilization from arsenopyrite dissolution and secondary mineral precipitation: Implications for managed aquifer recharge. Environmental Science Technology, 2014(48), 4395–4405. https://doi.org/10.1021/es405119q

    Article  CAS  Google Scholar 

  • Nganje, T. N., Hursthouse, A. S., Edet, A., Stirling, D., & Adamu, C. I. (2017). Hydrochemistry of surface water and groundwater in the shale bedrock Cross River Basin and Niger Delta Region, Nigeria. Applied Water Science. https://doi.org/10.1007/s13201-015-0308-9

    Article  Google Scholar 

  • Nickson, R. T., McArthur, J. M., Shrestha, B., Kyaw-Myint, T. O., & Lowry, D. (2005). Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Applied Geochemistry, 20, 55–56.

    Article  CAS  Google Scholar 

  • Nowak, M. E., Schwab, V. F., Lazar, C. S., Behrendt, T., Kohlhepp, B., Totsche, K. U., Küsel, K., & Trumbore, S. E. (2017). Carbon isotopes of dissolved inorganic carbon reflect utilization of different carbon sources by microbial communities in two limestone aquifer assemblages. Hydrology and Earth System Sciences, 21, 4283–4300. https://doi.org/10.5194/hess-21-4283-2017

    Article  CAS  Google Scholar 

  • O’Shea, B. M. (2006). Delineating the source, geochemical sinks and aqueous mobilization processes of naturally occurring arsenic in a coastal sandy aquifer, Ph.D thesis, School of Biological, Earth & Environmental Sciences, Faculty of Science University of New South Wales Sydney, Australia August 2006

  • O’Leary, M. H. (1988). Carbon isotopes in photosynthesis, fractionation techniques may reveal new aspects of carbon dynamics in plants. BioScience, 38, 328–336. https://doi.org/10.2307/1310735

    Article  CAS  Google Scholar 

  • Parker, S. R., Gammons, C. H., Smith, M. G., & Poulson, S. R. (2012). Behavior of stable isotopes of dissolved oxygen, dissolved inorganic carbon and nitrate in groundwater at a former wood treatment facility containing hydrocarbon contamination. Applied Geochemistry, 27, 1101–1110. https://doi.org/10.1016/j.apgeochem.2012.02.035

    Article  CAS  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s Guide of PhreeqC (Version 2)-A computer program for speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, Water-Resources Investigations Report 99–4259.

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Transactions-American Geophysical Union, 25, 914–923. https://doi.org/10.1029/TR025i006p00914

    Article  Google Scholar 

  • Pitkanen, P., Kaija, J., Blomqvist, R., Smellie, J.A.T., Frape, S. K., Laaksoharju, M., Negral, P. H., Casanova, J. & Karhu, J, (2002). Hydro geochemical interpretation of groundwater at Palmottu, Paper EUR 19118 EN, European Commission, Brussels, 2002, 155–167. https://DOI:https://doi.org/10.12691/ajwr-1-4-1

  • Podgorski, J. E., Eqani, S. A. M. A. S., Khanam, T., Ullah, R., Shen, H., & Berg, M. (2017). Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley. Science Advance. https://doi.org/10.1126/sciadv.1700935

    Article  Google Scholar 

  • Rais, M., Kabeer, B., Anwar, M., & Mehmood, T. (2010). Effect of habitat degradation on breeding water birds at Kallar Kahar Lake District Chakwal. The Journal of Animal and Plant Sciences, 20(4), 318–320.

    Google Scholar 

  • Raza, S. T., Ali, Z., Zainab, I., Sidra, S., Nimra, A., Zona, Z., & Aziz, K. (2007). Soil and water analysis for micro-nutrients in Wetland’s. The Journal of Animal and Plant Sciences, 25, 1168–1175.

    Google Scholar 

  • Renard, F., Putnis, C. V., Montes-Hernandez, G., Ruiz-Agudo, E., Hovelmann, J., & Sarret, G. (2015). Interactions of arsenic with calcite surfaces revealed by in situ nanoscale imaging. Geochimica Et. Cosmochimica Acta, 159, 61–79. https://doi.org/10.1016/j.gca.2015.03.025

    Article  CAS  Google Scholar 

  • Richards, L., King, R. C., Collins, A. S., Sayab, M., Khan, M. A., Hanif, M., Morley, C. K., & Warren, J. (2015). Macrostructures vs microstructures in evaporate detachments: An example from the Salt Range Pakistan. Journal of Asian Earth Sciences, 113(Part 2), 922–934. https://doi.org/10.1016/j.jseaes.2015.04.015

    Article  Google Scholar 

  • Robertson, F. N. (1989). Arsenic in groundwater under oxidizing conditions, south-west United-States. Environmental, Geochemistry and Health, 11(3–4), 171–185. https://doi.org/10.1007/BF01758668

    Article  CAS  Google Scholar 

  • Roman-Ross, G., Cuello, G. J., Turrillas, X., Fernandez-Martinez, A., & Charlet, L. (2006). Arsenite sorption and co-precipitation with calcite. Chemical Geology, 233(3–4), 328–336.

    Article  CAS  Google Scholar 

  • Saka, D., Akiti, T. T., Osae, S., Appenteng, M. K., & Gibrilla, A. (2013). Hydrogeochemistry and isotope studies of groundwater in the Ga West Municipal Area, Ghana. Applied Water Science, 3, 577–588. https://doi.org/10.1007/s13201-013-0104-3

    Article  CAS  Google Scholar 

  • Sako, A., Yaro, J. M., & Bamba, O. (2018). Impacts of hydrogeochemical processes and anthropogenic activities on groundwater quality in the Upper Precambrian sedimentary aquifer of Northwestern Burkina Faso. Applied Water Science, 8(88), 1–14. https://doi.org/10.1007/s13201-018-0735-5

    Article  CAS  Google Scholar 

  • Salbu, B., & Steinnes, E. (1995). Trace Elements in Natural Waters. CRC Press, Boca Raton, FL, 1995, 151–176.

    Google Scholar 

  • Saleem, S., Ali, W., & Afzal, M. S. (2018). Status of drinking water quality and its contamination in Pakistan. Journal of Environmental Research, 2(1), 6.

    Google Scholar 

  • Salem, Z. E., ElNahrawy, A., Attiah, A. M., & Edokpayi, J. N. (2022). Vertical and spatial evaluation of the groundwater chemistry in the Central Nile Delta Quaternary aquifer to assess the effects of human activities and seawater intrusion. Frontiers in Environmental Science. https://doi.org/10.3389/fenvs.2022.961059

    Article  Google Scholar 

  • Salifu, M., Aiglsperger, T., & Alakangas, L. (2020). Biogeochemical controls on 13CDIC signatures from circum-neutral pH groundwater in Cu-W-F Skarn Tailings to acidic downstream surface waters. Minerals, 10(758), 1–16. https://doi.org/10.3390/min10090758

    Article  CAS  Google Scholar 

  • Sameeni, S.J. (2009). The Salt Range: Pakistan's unique field museum of geology and paleontology.- In: LIPPS J.H. & GRANIER B.R.C. (eds.), PaleoParks - The protection and conservation of fossil sites worldwide.- Carnets de Géologie / Notebooks on Geology, Brest, Book 2009/03, Chapter 6 (CG2009_BOOK_03/06)

  • Sanjrani, M. A., Mek, T., Sanjrani, N. D., Leghari, S. J., Moryani, H. T., & Shabnam, A. B. (2017). Current situation of aqueous arsenic contamination in Pakistan, Focused on Sindh and Punjab Province, Pakistan: A review. Journal of Pollution Effects and Control, 5(4), 1–8. https://doi.org/10.4176/2375-4397.1000207

    Article  Google Scholar 

  • Saxe, J. K., Bowers, T. S., & Reid, K. R. (2006). Arsenic. In R. D. Morrison & B. L. Murphy (Eds.), Environmental forensics: Contaminant specific guide (pp. 279–292). Academic Press.

    Google Scholar 

  • Scholl, M. A., Ingebritsen, S. E., Janik, C. J., & Kauahikaua, J. P. (1998). Use of precipitation and groundwater isotopes to interpret regional hydrology on a tropical volcanic Island; Kilauea volcano area, Hawaii. Water Resource Research, 32, 3525–3537. https://doi.org/10.1029/95WR02837

    Article  Google Scholar 

  • Schulte, P., Geldern, R. V., Freitag, H., Karim, A., Négrel, P., Petelet-Giraud, E., Probst, A., Probst, J. L., Telmer, K., Veizer, J., & Barth, J. A. C. (2011). Applications of stable water and carbon isotopes in watershed research: Weathering, carbon cycling, and water balances. Earth Science Reviews, 109, 20–31. https://doi.org/10.1016/S0883-2927(02)00018-5

    Article  CAS  Google Scholar 

  • Shah, S. M. I. (1977). Stratigraphy of Pakistan. Geological Survey of Pakistan Memoirs, 885(12), 138.

    Google Scholar 

  • Shakoor, A., Khan, Z. M., Arshad, M., Farid, H. U., Sultan, M., Azmat, M., Shahid, M. A., & Hussain, Z. (2017). Regional groundwater quality management through hydrogeological modeling in Lower Chenab Canal, West Faisalabad, Pakistan. Journal of Chemistry, 2041648, 16. https://doi.org/10.1155/2017/2041648

    Article  CAS  Google Scholar 

  • Shakoor, M. B., Bibi, I., Niazi, N. K., Shahid, M., Nawaz, M. F., Farooqi, A., Naidu, R., Rahman, M. M., Murtaza, G., & Lüttge, A. (2018). The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere, 199, 737–746. https://doi.org/10.1016/j.chemosphere.2018.02.002

    Article  CAS  Google Scholar 

  • Shaw, G. D., White, E. S., & Gammons, C. H. (2013). Characterizing groundwater-lake interactions and its impact on lake water quality. Journal of Hydrology, 492(2013), 69–78. https://doi.org/10.1016/j.proenv.2014.03.085

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568. https://doi.org/10.1016/S0883-2927(02)00018-5

    Article  CAS  Google Scholar 

  • Smith, A. H., Lopipero, P. A., Bates, M. N., & Steinmaus, C. A. (2002). Arsenic epidemiology and drinking water standards. Science, 296(5576), 2145–2146. https://doi.org/10.1126/science.1072896

    Article  CAS  Google Scholar 

  • Striegl, R. G., Kortelainen, P., Chanton, J. P., Wickland, K. P., Bugna, G. C., & Rantakari, M. (2001). Carbon dioxide partial pressure and 13C content of North temperate and boreal lakes at Spring ice melt. Limnology and Oceanography, 46, 941–945. https://doi.org/10.4319/lo.2001.46.4.0941

    Article  CAS  Google Scholar 

  • Stuckey, J. W., Schaefer, M. V., Kocar, B. D., Benner, S. G., & Fendorf, S. (2016). Arsenic release metabolically limited to permanently water-saturated soil in Mekong Delta. Nature Geoscience, 9, 70–78. https://doi.org/10.1038/NGEO2589

    Article  CAS  Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry: Chemical equilibria and rates in natural waters (3rd ed., p. 1022). Wiley.

    Google Scholar 

  • Todd, D. K. (1980). Groundwater hydrology (2nd ed., p. 535). Wiley.

    Google Scholar 

  • Walter, J., Chesnaux, R., Cloutier, V., & Gaboury, D. (2017). The influence of water/rock-water/clay interactions and mixing in the salinization processes of groundwater. Journal of Hydrology: Regional Studies, 13, 168–188. https://doi.org/10.1016/j.ejrh.2017.07.004

    Article  Google Scholar 

  • Wang, L., Li, G., Dong, Y., Han, D., & Zhang, J. (2014). Using hydrochemical and isotopic data to determine sources of recharge and groundwater evolution in an arid region: A case study in the upper–middle reaches of the Shule River basin, Northwestern China. Environmental Earth Science, 73, 1901–1915. https://doi.org/10.1007/s12665-014-3719-2

    Article  CAS  Google Scholar 

  • Wang, S., Zhang, M., Hughes, C. E., Crawford, J., Wang, G., Chen, F., Du, M., Qiu, X., & Zhou, S. (2018). Meteoric water lines in arid Central Asia using event-based and monthly data. Journal of Hydrology, 562, 435–445. https://doi.org/10.1016/j.jhydrol.2018.05.034

    Article  Google Scholar 

  • WHO. (2004). Guidelines for drinking-water quality, 3rd edition, Vol.-1, World Health Organization 2004 Drinking-water Quality Geneva, ISBN 92 4 154638 7.

  • WWF. (2007). Pakistan's waters at risk, water and health related issues in Pakistan and key recommendations; p. 1–33. A special report, WWF-Pakistan, Ferozepur Road, Lahore-54600, Pakistan.

  • Yeh, H., Lee, Cheng-Haw., & Kuo-Chin, Hsu. (2011). Oxygen and hydrogen isotopes for the characteristics of groundwater recharge: A case study from the Chih-Pen Creek basin. Taiwan. Environmental Earth Science, 62, 393–402. https://doi.org/10.1007/S12665-010-0534-2

    Article  CAS  Google Scholar 

  • Young, William J., Arif, A., Tousif, B., Edoardo, B., Stephen, D., Garthwaite III, W. R., Michael, G. E., Christina, L., Lucy, L., Ian, M., & Basharat, S. (2019). Pakistan: Getting More from Water. World Bank, Washington, DC. http://hdl.handle.net/10986/31160

  • Zaidi, F. K., Nazzal, Y., Jafri, M. K., Naeem, M., & Ahmad, I. (2015). Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: A case study from Northwestern Saudi Arabia. Environment Monitoring and Assessment, 187(10), 1–18. https://doi.org/10.1007/s10661-015-4828-4

    Article  CAS  Google Scholar 

  • Zandagba, J., Adandedji, F. M., Mama, D., Chabi, A., & Afouda, A. (2016). Assessment of the physicochemical pollution of a water body in a perspective of integrated water resource management: Case study of Nokoué Lake. Journal of Environmental Protection, 7, 656–669. https://doi.org/10.4236/jep.2016.75059

    Article  CAS  Google Scholar 

  • Zhang, Y., Sun, J., & Huang, G. (2012). Relationship of arsenic contamination and ecology environment, 44–45, In Arsenic in the Environment-Proceedings; Understanding the Geological and Medical Interface of Arsenic, Bundschuh and Bhattacharya (eds), Taylor & Francis Group, London, ISBN 978–0–415–63763–3.

  • Zubair, M., Martyniuk, C. J., & Shaheen, A. (2018). Rising level of arsenic in water and fodder: A growing threat to livestock and human populations in Pakistan. Toxin Reviews, 37(3), 171–181. https://doi.org/10.1080/15569543.2017.1348360

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere gratitude to D.G. (PINSTECH), Director Technology and Head Isotope Application Division (Dr. Saira Butt, DCS) for technical and field sampling support for completion of this study. The authors recognize the services of Isotope Geochemistry and Ecological Research Group (IGERG) and Stable Isotope Hydrological Group (SIHG) for provision of technical assistance and stable isotope analyses. Thanks, are also due to Muhammad Bashir, College of Earth and Environmental Science, the University of Punjab, Lahore for providing assistance. The authors would also like to thank valuable comments suggested by reviewers and editor of journal.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Javed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javed, T., Ahmad, N. & Ahmad, S.R. Coupling hydrogeochemistry and stable isotopes (δ2H, δ18O and δ13C) to identify factors affecting arsenic enrichment of surface water and groundwater in Precambrian sedimentary rocks, eastern salt range, Punjab, Pakistan. Environ Geochem Health 45, 6643–6673 (2023). https://doi.org/10.1007/s10653-023-01635-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01635-3

Keywords

Navigation