Skip to main content

Advertisement

Log in

High accumulation of metals and metalloids in the liver of the blue tilapia (Oreochromis aureus) during a massive mortality event induced by a mine tailing spill

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

In this study, the concentration of six metal(loid)s was examined in the fish Oreochromis aureus collected from El Comedero dam during a massive mortality event induced by a mine tailing spill. A major spill (~ 300,000 m3) of waste was released into the San Lorenzo River System following a rupture in the tailing dam of a mining plant in NW Mexico; consequently, the discharged material flowed into El Comedero dam. The accumulation of metal(oid)s in the tissues of O. aureus showed higher levels in the liver than in the guts and muscle. Concentrations in the liver were high (As, 1.1–1063; Cd, 8.9–392; Cu, 372–59,129; Hg, 0.46–19.79; Se, 8.7–748; and Zn, 116–820 μg g−1), revealing that these fish were exposed to high concentrations of these elements. The mortality of fish could have resulted from the combined effect of the six analyzed metal(loid)s, as well as other residues present in mine tailings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdel-Moneim, A. M., Essawy, A. E., El-Din, N. K. B., & El-Naggar, N. M. (2016). Biochemical and histopathological changes in liver of the Nile tilapia from Egyptian polluted lakes. Toxicololy and Industrial Health, 32, 457–467.

    Article  CAS  Google Scholar 

  • Adeogun, A. O., Ibor, O. R., Omiwole, R., Chukwuka, A. V., Adewale, A. H., Kumuyi, O., & Arukwe, A. (2020). Sex-differences in physiological and oxidative stress responses and heavy metals burden in the black jaw tilapia, Sarotherodon melanotheron from a tropical freshwater dam (Nigeria). Comparative Biochemistry and Physiology Part C, 229, 108676.

    CAS  Google Scholar 

  • Allen, P. (1994). Distribution of mercury in the soft tissues of the blue tilapia Oreochromis aureus (Staindachner) after acute exposure to mercury (II) chloride. Bulletin of Environmental Contamination and Toxicololgy, 53, 675–683.

    CAS  Google Scholar 

  • Allen, P. (1995). Chronic accumulation of cadmium in the edible tissues of Orechromis aureus (Steindachner): Modification by mercury and lead. Archives of Environmental Contamination and Toxicology, 29, 8–14.

    Article  CAS  Google Scholar 

  • Arreguin Rebolledo, U., Páez-Osuna, F., & Fernández, R. (2021). Single and mixture toxicity of As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, and Zn to the rotifer Proales similis under different salinities. Environmental Pollution, 271, 116357.

    Article  Google Scholar 

  • Authman, M. M. N., Abbas, H. H., & Abbas, W. T. (2013). Assessment of metal status in drainage canal water and their bioaccumulation in Oreochromis niloticus fish in relation to human health. Environmental and Monitoring Assesment, 185, 891–907.

    Article  CAS  Google Scholar 

  • Bergés-Tiznado, M. E., Márquez-Farías, F., Lara-Mendoza, R. E., Torres-Rojas, Y. E., Galván-Magaña, F., Bojórquez-Leyva, H., & Páez-Osuna, F. (2015). Mercury and selenium in muscle and target organs of scalloped Hammerhead sharks Sphyrna lewini of the SE Gulf of California: Dietary intake, molar ratios, loads, and human health risks. Archives of Environmental Contamination and Toxicology, 69, 440–452.

    Article  Google Scholar 

  • Bergés-Tiznado, M. E., Márquez-Farías, F., Osuna-Martínez, C. C., & Páez-Osuna, F. (2021). Arsenic in the top predators sailfish (Istiophorus platypterus) and dolphinfish (Coryphaena hippurus) off the southeastern Gulf of California. Environmental Geochemistry and Health, 43, 3441–3455.

    Article  Google Scholar 

  • CCME. (2001). Canadian Council of Ministers of the Environment. Canadian sediment quality guidelines for the protection of aquatic life. http://www.ccme.ca/sourcetotap/wqi.html. Accessed Dec 2021.

  • Chatterjee, S., Datta, S., Das, T. K., Veer, V., Mishra, D., Chakraborty, B., Datta, S., Mukhopadhyay, S. K., & Gupta, D. K. (2016). Metal accumulation and metallothionein induction in Oreochromis niloticus grown in wastewater fed fishponds. Ecological Engineering, 90, 405–416.

    Article  Google Scholar 

  • DOF. (2011). Norma Oficial Mexicana NOM-242-SSA1–2009, Productos y servicios. Productos de la pesca frescos, refrigerados, congelados y procesados. Especificaciones sanitarias y métodos de prueba. Secretaría de Salud. 128 p. (in Spanish).

  • Dsikowitzky, L., Mengesha, M., Dadebo, E., Veiga de Carvalho, C. E., & Sindern, S. (2013). Assessment of heavy metals in water samples and tissues of edible fish species from Awassa and Koka Rift Valley Lakes, Ethiopia. Environmental Monitoring and Assessment, 185, 3117–3131.

    Article  CAS  Google Scholar 

  • El Mahmoud-Hamed, M. S., Montesdeoca-Esponda, S., Santana-Del-Pino, A., Zamel, M. L., Brahim, M., Tfeil, H., Santana-Rodriguez, J. J., Sidoumou, Z., & Ahmed-Kankou, M. (2019). Distribution and health risk assessment of cadmium, lead, and mercury in freshwater fish from the right bank of Senegal River in Mauritania. Environmental Monitoring and Assessment, 191, 493.

    Article  Google Scholar 

  • EPA. (2005). Human Health Risk Assessment Protocol. Chapter 7: Characterizing Risk and Hazard. https://archive.epa.gov/epawaste/hazard/tsd/td/web/pdf/05hhrap7.pdf. Accessed 17 Aug 2022.

  • EPA. (2022). Integrated Risk Information System (IRIS). https://www.epa.gov/iris. Accessed 17 Aug 2022.

  • FAO. (2021). Tilapia aquaculture in Mexico: assessment with a focus on social and economic performance. NFIA/C1219. FAO Fisheries and Aquaculture Circular. Food and Agriculture Organization of the United Nations.

  • Frías-Espericueta, M. G., Abad-Rosales, S., Nevárez-Velázquez, A. C., Osuna-López, I., Páez-Osuna, F., Lozano-Olvera, R., & Voltolina, D. (2008). Histological effects of a combination of heavy metal son Pacific White shrimp Litopenaeus vannamei juveniles. Aquatic Toxicology, 89, 152–157.

    Article  Google Scholar 

  • Frías-Espericueta, M. G., Quintero-Alvarez, J. M., Osuna-López, J. I., Sánchez-Gaxiola, C. M., López-López, G., Izaguirre-Fierro, G., & Voltolina, D. (2010). Metal contents of four commercial fish species of NW Mexico. Bulletin of Environmental Contamination and Toxicology, 85, 334–338.

    Article  Google Scholar 

  • Gymah, E., Akoto, O., Mensah, J. K., & Bortey-Sam, N. (2018). Bioaccumulation factors and multivariate analysis of heavy metals of three edible fish species from the Barekese reservoir in Kumasi Ghana. Environmental Monitoring and Assessment, 190, 553.

    Article  Google Scholar 

  • Huang, Y. K., Lin, K. H., Chen, H. W., Chang, C. C., Liu, C. W., Yang, M. H., & Hsueh, Y. M. (2003). Arsenic species contents at aquaculture farm and in farmed mouthbreeder (Oreochromis mossambicus) in blackfoot disease hyperendemic areas. Food and Chemical Toxicology, 41, 1491–1500.

    Article  CAS  Google Scholar 

  • Izaguirre-Fierro, G., Páez-Osuna, F., & Osuna-López, J. I. (1992). Heavy metals in fishes from Culiacán valley, Sinaloa, Mexico. Ciencias Marinas, 18, 143–151.

    Article  CAS  Google Scholar 

  • Jiang, D., Hu, Z., Liu, F., Zhang, R., Duo, B., Fu, J., Cui, Y., & Li, M. (2014). Heavy metals levels in fish from aquaculture farms and risk assessment in Lhasa, Tibetan autonomous region of China. Ecotoxicology, 23, 577–583.

    Article  CAS  Google Scholar 

  • Kapia, S., Rao, B. K. R., & Sakulas, H. (2016). Assessment of heavy metal pollution risks in Yonki Reservoir environmental matrices affected by gold mining activity. Environmental Monitoring and Assessment, 188, 586.

    Article  Google Scholar 

  • Khallaf, E. A., Galal, M., & Authman, M. (2003). The biology of Oreochromis niloticus in a polluted canal. Ecotoxicology, 12, 405–416.

    Article  CAS  Google Scholar 

  • Kossoff, D., Dubbin, W. E., Alfredsson, M., Edwards, S. J., Macklin, M. G., & Hudson-Edwards, K. A. (2014). Mine tailings dams: Characteristics, failure, environmental impacts, and remediation. Applied Geochemitry, 51, 229–245.

    Article  CAS  Google Scholar 

  • Le Croizier, G., Lacroix, C., Artigaud, S., Le Floch, S., Raffray, J., Penicaud, V., Coquillé, V., Autier, J., Rouget, M. L., Le Bayon, N., Lae, R., & De Morais, L. T. (2018). Significance of metallothioneins in differential cadmium accumulation kinetics between two marine fish species. Environmental Pollution, 236, 462–476.

    Article  Google Scholar 

  • Léopold, E. N., Jung, M. C., & Emmanuel, E. G. (2015). Accumulation of metals in three fish species from the Yaounde Municipal Lake in Cameroon. Environmental Monitoring and Assessment, 187, 560.

    Article  Google Scholar 

  • Lin, T. S., Lin, C. S., & Chang, C. L. (2005). Trace elements in cultured tilapia (Oreochromis mossambicus): Results from a farm in Southern Taiwan. Bulletin of Environmental Contamination and Toxicology, 74, 308–313.

    Article  CAS  Google Scholar 

  • Ling, M., Wu, C., Yang, K., & Hsu, H. (2013). Differential accumulation of trace elements in ventral and dorsal muscle tissues in tilapia and milkfish with different feeding habits from the same cultured fishery pond. Ecotoxicology and Environmental Safety, 89, 222–230.

    Article  CAS  Google Scholar 

  • Mapenzi, L. L., Shimba, M. J., Moto, E. A., Maghembe, R. S., & Mmochi, A. J. (2020). Heavy metals bio-accumulation in tilapia and catfish species in Lake Rukwa ecosystem Tanzania. Journal of Geochemical Exploration, 208, 106413.

    Article  CAS  Google Scholar 

  • Martínez-Durazo, A., Cruz-Acevedo, E., Betancourt-Lozano, M., & Jara-Marini, M. E. (2021). Comparative assessment of metal bioaccumulation in Tilapia and Largemouth Bass from three dams of the Yaqui River. Biological Trace Element Research, 199, 3112–3125.

    Article  Google Scholar 

  • Mbewe, G., Mutondo, M., Maseka, K., & Sichilongo, K. (2016). Assessment of heavy metal pollution in sediments and Tilapia fish species in Kafue River of Zambia. Archives of Environmental Contamination and Toxicology, 71, 383–393.

    Article  CAS  Google Scholar 

  • Mieiro, C. L., Bervoets, L., Joosen, S., Blust, R., Duarte, A. C., Pereira, M. E., & Pacheco, M. (2011). Metallothioneins failed to reflect mercury external levels of exposure and bioaccumulation in marine fish – Considerations on tissue and species specific responses. Chemosphere, 85, 114–121.

    Article  CAS  Google Scholar 

  • Nauen, C. (1983). Compilation of legal limits for hazardous substances in fish and fishery products. FAO Fisheries Circular, 764, 102.

    Google Scholar 

  • Ndimele, P. E., Pedro, M. O., Agboola, J. I., Chukwuka, K. S., & Ekwu, A. O. (2017). Heavy metal accumulation in organs of Oreochromis niloticus (Linnaeus, 1758) from industrial effluent-polluted aquatic ecosystem in Lagos, Nigeria. Environmental Monitoring and Assessment, 189, 255.

    Article  Google Scholar 

  • NRC-CNRC. (2008). DOLT-4, Dogfish liver Certified Reference Material for Trace Metals. Ottawa: National Research Council Canada—Conseil National de Recherches Canada, Ottawa

  • Okogwu, O. I., Nwonumara, G. N., & Okoh, F. A. (2019). Evaluating heavy metals pollution and exposure risk through the consumption of four commercially important fish species and water from Cross River ecosystem, Nigeria. Bulletin of Environmental Contamination and Toxicology, 102, 867–872.

    Article  CAS  Google Scholar 

  • Osuna-Martínez, C. C., Armienta, M. A., Bergés-Tiznado, M., & Páez-Osuna, F. (2021). Arsenic in waters, soils, sediments, and biota from Mexico: An environmental review. Science of the Total Environment, 752, 14062.

    Article  Google Scholar 

  • Páez-Osuna, F., Álvarez-Borrego, S., Ruiz-Fernández, A. C., García-Hernández, J., Jara-Marini, M., Bergés-Tiznado, M. E., Piñón-Gimate, A., Alonso-Rodríguez, R., Soto-Jiménez, M. F., Frías-Espericueta, M. G., Ruelas-Inzunza, J., Green-Ruiz, C., Osuna-Martínez, C. C., & Sánchez-Cabeza, J. A. (2017). Environmental status of the Gulf of California: A pollution review. Earth-Science Reviews, 166, 181–205.

    Article  Google Scholar 

  • Páez-Osuna, F., Bojórquez-Leyva, H., Bergés-Tiznado, M., Rubio-Hernández, O., Fierro-Sañudo, J. F., & Ramírez-Rochín, J. (2015). Heavy metals in waters and suspended sediments affected by a mine tailing spill in the upper San Lorenzo River, NW México. Bulletin of Environmental Contamination and Toxicology, 94, 583–588.

    Article  Google Scholar 

  • Páez-Osuna, F., Pérez-González, R., Izaguirre-Fierro, G., Zazueta-Padilla, H. M., & Flores-Campaña, L. M. (1995). Trace metal concentrations and their distribution in the lobster Panulirus inflatus (Bouvier, 1895) from the Mexican Pacific coast. Environmental Pollution, 90, 163–170.

    Article  Google Scholar 

  • Phillips, D. J. H. (1980). Quantitative aquatic biological indicators (p. 488). Applied Science Publishers Ltd.

    Google Scholar 

  • Ralston, N. V. C., Ralston, C. R., & Raymond, L. J. (2016). Selenium health benefit values: Updated criteria for mercury risk assessments. Biological Trace Element Research, 171, 262–269.

    Article  CAS  Google Scholar 

  • Rosseland, B. O., Teien, H. C., Basnet, S., Borgstrøm, R., & Sharma, C. M. (2017). Trace elements and organochlorine pollutants in selected fish species from Lake Phewa. Nepal. Toxicological & Environmental Chemistry, 99, 390–401.

    Article  CAS  Google Scholar 

  • Ruelas-Inzunza, J., Amezcua, F., Coiraton, C., & Páez-Osuna, F. (2020). Cadmium, mercury, and selenium in muscle of the sacalloped hammerhead Sphyrna lewini from the tropical Eastern Pacific: Variation with age, molar ratios and human health risk. Chemosphere, 242, 125180.

    Article  CAS  Google Scholar 

  • Ruelas-Inzunza, J., Rojas-Ruiz, E., Spanopoulos-Hernández, M., & Barba-Quintero, G. (2015). Mercury in the blue tilapia Oreochromis aureus from a dam located in a mining region of NW Mexico: Seasonal variation and percentage weekly intake (PWI). Environmental Monitoring and Assessment, 187, 233.

    Article  CAS  Google Scholar 

  • Ruelas-Inzunza, J., Vega-Sánchez, B., Ramos-Osuna, M., & Páez-Osuna, F. (2011). Trophic transfer and dietary mineral intake of essential elements in thunus albacares and Katsuwonus pelamis from the Eastern Pacific. Biological Trace Element Research, 143, 231–239.

    Article  CAS  Google Scholar 

  • Sallam, K. I., Abd-Elghany, S. M., & Mohammed, M. A. (2019). Heavy metal residues in some fishes from Mazala lake, Egypt, and their health-risk assessment. Journal of Food Science, 84, 1957–1965.

    Article  CAS  Google Scholar 

  • SEMARNAT. (2021). Consulta Temática. Consumo Nacional Aparente por destino y especie. http://dgeiawf.semarnat.gob.mx:8080/ibi_apps/WFServlet?IBIF_ex=D2_PESCA03_02&IBIC_user=dgeia_mce&IBIC_pass=dgeia_mce&NOMBREANIO. Accessed 17 August 2022.

  • Stickney, R. R. (2017). Tilapia feeding habits and environmental tolerances. In P. W. Perschbacher & R. R. Stickney (Eds.), Tilapia in Intensive Co-culture (pp. 25–35). Wiley.

    Google Scholar 

  • Sujitha, S. B., Jonathan, M. P., Aurioles-Gamboa, D., Campos Villegas, L. E., Bohórquez-Herrera, J., & Hernández-Camacho, C. J. (2019). Trace elements in marine organisms of Magdalena Bay, Pacific coast of Mexico: Bioaccumulation in a pristine environment. Environmental Geochemistry and Health, 41, 1075–1089.

    Article  CAS  Google Scholar 

  • Swinkels, L. H., Van de Ven, M. W. P. M., Stassen, M. J. M., Van der Velde, G., Lenders, H. J. R., & Smolders, A. J. P. (2014). Suspended sediment causes annual acute fish mortality in the Pilcomayo River (Bolivia). Hydrological Processes, 28, 8–15.

    Article  Google Scholar 

  • Thomann, R. V., Mahony, J. D., & Muller, R. (1995). Steady state model of biota-sediment accumulation factor for metals in two marine bivalves. Environmental Toxicological and Chemistry, 4, 989–998.

    Google Scholar 

  • UNEP. (2008). Water quality for ecosystem and human health. 2nd edn. United Nations Environment Programme Global Environment Monitoring System/Water Programme, Burlington.

  • WHO. (2022). World Health Organization. Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). https://apps.who.int/food-additives-contaminants-jecfa-database/. Accessed 17 Aug 2022.

  • Yap, C. K., Jusoh, A., Leong, W. J., Karami, A., & Ong, G. H. (2015). Potential human health risk assessment of heavy metals via the consumption of tilapia Oreochromis mossambicus collected from contaminated and uncontaminated ponds. Environmental Monitoring and Assessment, 187, 584.

    Article  Google Scholar 

  • Zar, J. (2010). Biostatistical analysis (5th ed.). Prentice Hall Pearson.

    Google Scholar 

Download references

Acknowledgements

This work was carried out with the collaboration of the fishermen of El Comedero dam Jorge Zazueta, Miguel Urrea, and Pedro Murguía. Authors thank H. Bojórquez-Leyva for his assistance in the analytical work.

Funding

Work supported by the Dirección General de Asuntos del Personal Académico, Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica and the Universidad Nacional Autónoma de México (DGAPA, PAPIIT, UNAM) Project IN203922 titled “Metales, metaloides y microplásticos en organismos de importancia ecológica y comercial de la eco-región del Golfo de California”.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this work. FPO conceived the ideas and designed the research; Formal analysis: MEBT, MGFL, GVC, JALC, SGAS, JFFS, JRR; Funding acquisition: FPO; Methodology: MEBT, MGFL, GVC, JALC, SGAS, JFFS, JRR; Investigation: FPO; Resources and Supervision: FPO; Writing – original draft: FPO; Writing – review & editing: FPO, MEBT.

Corresponding author

Correspondence to F. Páez-Osuna.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 203 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Páez-Osuna, F., Bergés-Tiznado, M.E., Fregoso-López, M.G. et al. High accumulation of metals and metalloids in the liver of the blue tilapia (Oreochromis aureus) during a massive mortality event induced by a mine tailing spill. Environ Geochem Health 45, 3155–3169 (2023). https://doi.org/10.1007/s10653-022-01399-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01399-2

Keywords

Navigation