Skip to main content
Log in

Copper mining in the eastern Amazon: an environmental perspective on potentially toxic elements

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Mining activity is of great economic and social importance; however, volumes of metallic ore tailings rich in potentially toxic elements (PTEs) may be produced. In this context, managing this environmental liability and assessing soil quality in areas close to mining activities are fundamental. This study aimed to compare the concentrations of PTEs—arsenic (As), barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), molybdenum (Mo), nickel (Ni), lead (Pb) and zinc (Zn)—as well as the fertility and texture of Cu tailings and soils of native, urban and pasture areas surrounding a Cu mining complex in the eastern Amazon. The levels of PTEs were compared with soil prevention values, soil quality reference values, global average soil concentrations and average upper continental crust concentrations. The contamination factor (CF), degree of contamination (Cdeg), potential ecological risk index (RI), geoaccumulation index (Igeo) and pollution load index (PLI) were calculated. The levels of Co, Cu and Ni in the tailings area exceeded the prevention values, soil quality reference values and average upper continental crust concentrations; however, the tailings area was considered unpolluted according to PLI and RI and presented a low potential ecological risk. The high concentrations of PTEs are associated with the geological properties of the area, and the presence of PTEs-rich minerals supports these results. For the urban and pasture areas, none of the 11 PTEs analyzed exceeded the prevention values established by the Brazilian National Environment Council.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data are available from Suellen Nunes de Araújo and Sílvio Ramos.

Code availability

Not applicable.

References

  • Afonso, T. F., Demarco, C. F., Pieniz, S., Quadro, M. S., Camargo, F. A. O., & Andreazza, R. (2020). Bioprospection of indigenous flora grown in copper mining tailing area for phytoremediation of metals. Journal of Environmental Management, 256, 109953.

    Article  CAS  Google Scholar 

  • Azam, H. M., Alam, S. T., Hasan, M., Yameogo, D. D. S., Kannan, A. D., Rahman, A., & Kwon, M. J. (2019). Phosphorous in the environment: characteristics with distribution and effects, removal mechanisms, treatment technologies, and factors affecting recovery as minerals in native and engineered systems. Environmental Science Pollution Research, 26, 20183–20207.

    Article  CAS  Google Scholar 

  • Berni, G. V., Heinrich, C. A., Lobato, L. M., Wall, V. J., Rosière, C. A., & Freitas, M. A. (2014). The Serra Pelada Au-Pd-Pt deposit Carajás, Brasil: Geochemistry, mineralogy, and zoning of hydrothermal alteration. Economic Geography, 109, 1883–1899.

    CAS  Google Scholar 

  • Birani, S. M., Fernandes, A. R., De Braz, A. M. S., Pedroso, A. J. S., & Alleoni, L. R. F. (2015). Available contents of potentially toxic elements in soils from the Eastern Amazon. Chemie der Erde-Geochemistry, 75(1), 143–151.

    Article  CAS  Google Scholar 

  • Brasil, E., Cravo, M. D. S., & Viegas, I. (2020). Recomendações de calagem e adubação para o estado do Pará. Embrapa Amazônia Oriental-Livro técnico (INFOTECA-E).

  • Chileshe, M. N., Syampungani, S., Festin, E. S., Tigabu, M., Daneshvar, A., & Ode´, N. P. C. (2019). Physico-chemical characteristics and heavy metal concentrations of copper mine wastes in Zambia: Implications for pollution risk and restoration. Journal of Forestry Research, 31, 1283–1293.

    Article  Google Scholar 

  • Christou, A., Theologides, C. P., Costa, C., Kalavrouziotis, I. K., & Varnavas, S. P. (2017). Assessment of toxic heavy metals concentrations in soils and wild and cultivated plant species in Limni abandoned copper mining site, Cyprus. Journal of Geochemical Exploration, 178, 16–22.

    Article  CAS  Google Scholar 

  • CONAMA (Conselho Nacional do Meio Ambiente). (2009). Resolução no 420 de 28 de dezembro de 2009. P. 12.

  • Da Silva, Y. J. A. B., Do Nascimento, C. W. A., Cantalice, J. R. B., Da Silva, Y. J. A. B., & Cruz, C. M. C. A. (2015). Watershed-scale assessment of background concentrations and guidance values for heavy metals in soils from a semiarid and coastal zone of Brazil. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-015-4782-1

    Article  Google Scholar 

  • De Lima, M. W., Hamid, S. S., De Souza, E. S., Teixeira, R. A., Palheta, D. C., Faial, K. C. F., & Fernandes, A. R. (2020). Geochemical background concentrations of potentially toxic elements in soils of the Carajás Mineral Province, southeast of the Amazonian Craton. Environmental Monitoring and Assessment, 192, 649.

    Article  Google Scholar 

  • Dung, T. T. T., Cappuyns, V., Swennen, R., & Phung, N. K. (2013). From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Reviews in Environmental Science and Bio/technology, 12, 335–353.

    Article  CAS  Google Scholar 

  • EMBRAPA- Empresa Brasileira de Pesquisa Agropecuária. (1997). Manual de métodos de análise de solo (2nd ed.). Embrapa Solos.

    Google Scholar 

  • Esmaeili, A., Moore, F., Keshavarzi, B., Jaafarzadeh, N., & Kermani, M. (2014). A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone Iran. Catena, 121, 88–98.

    Article  CAS  Google Scholar 

  • Fadigas, F. S., Amaral Sobrinho, N. M. B., Mazur, N., Anjos, L. H. C., & Freixo, A. A. (2006). Proposition of reference values for natural concentration of heavy metals in Brazilian soils. Brazilian Journal of Agricultural and Environmental Engineering., 10, 699–705.

    Google Scholar 

  • Fernandes, A. R., de Souza, E. S., de Souza Braz, A. M., Birani, S. M., & Alleoni, L. R. F. (2018). Quality reference values and background concentrations of potentially toxic elements in soils from the Eastern Amazon Brazil. Journal of Geochemical Exploration, 190, 453–463.

    Article  CAS  Google Scholar 

  • Genchi, G., Carocci, A., Sinicropi, M. S., & Catalano, A. (2020). Nickel: human health and environmental toxicology. International Journal of Environmental Research and Public Health, 17(3), 679.

    Article  CAS  Google Scholar 

  • Gao, H., Bai, J., Xiao, R., Liu, P., Jiang, W., & Wang, J. (2013). Levels, sources and risk assessment of trace elements in wetland soils of a typical shallow freshwater lake, China. Stoch Environ Res Risk Assess, 27, 275–284.

    Article  Google Scholar 

  • Gastauer, M., Silva, S. R., Caldeira, C. F., Ramos, S. J., Souza Filho, P. F. M., Furtini Neto, A. E., & Siqueira, J. O. (2018). Mine land rehabilitation: Modern ecological approaches for more sustainable mining. Journal of Cleaner Production, 172, 1409–1422.

    Article  Google Scholar 

  • Giri, S., Singh, A. K., & Mahato, M. K. (2017). Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India. Journal of Earth System Science, 126, 49.

    Article  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control a sedimentological approach. Water Research, 14, 975–1001.

    Article  Google Scholar 

  • IBRAM – Instituto Brasileiro de Mineração. (2019). Isto e mineração. Material de divulgação, Brasil.

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Springer.

    Book  Google Scholar 

  • Li, J., Zheng, B., He, Y., Zhou, Y., Chen, X., Ruan, S., Yang, Y., Dai, C., & Tang, L. (2018). Antimony contamination, consequences and removal techniques: a review. Ecotoxicology and Environmental Safety, 156, 125–134.

    Article  CAS  Google Scholar 

  • Licina, V., Aksic, M. F., Tomic, Z., Trajkovic, I., Mladenovic, M. M. S. A., & Rinklebe, J. (2017). Bioassessment of heavy metals in the surface soil layer of an opencast mine aimed for its rehabilitation. Journal of Environmental Management, 186, 240–252.

    Article  CAS  Google Scholar 

  • Moreto, C. P. N., Monteiro, L. V. S., Xavier, R. P., Creaser, R. A., Du Frane, S. A., Melo, G. H. C., Marco, A., Da Silva, D., Tassinari, C. C. G., & Sato, K. (2015). Timing of multiple hydrothermal events in the iron oxide–copper– gold deposits of the southern copper belt, Carajás Province, Brazil. Mineralium Deposita, 50, 517–546.

    Article  CAS  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geo Journal, 2, 108–118.

    Google Scholar 

  • Da Pereira, W. V. S., Teixeira, R. A., De Souza, E. S., De Moraes, A. L. F., Campos, W. E. O., Do Amarante, C. B., Martins, G. C., & Fernandes, A. R. (2020). Chemical fractionation and bioaccessibility of potentially toxic elements in area of artisanal gold mining in the Amazon. Journal of Environmental Management, 267, 110644.

    Article  CAS  Google Scholar 

  • Rudnick, R., Gao, S. (2014). Composition of the Continental Crust. Treatise on geochemistry, (2 Ed, 4, pp 1–51), California: Elsevier.

  • Sahoo, P. K., Dall’agnol, R., Salomão, G. N., Ferreira Junior, J. S., Da Silva, M. S., Martins, G. C., Souza Filho, P. W. M., Powell, M. A., Maurity, C. W., Angelica, R .S., Da Costa, M. F., Siqueira, J. O. (2019). Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: a high density sampling survey in the Parauapebas basin, Brazilian Amazon. Environmental Geochemistry and Health, 42(1), 255–282.

  • Salomão, G. N., Dall’agnol, R., Angélica, R. S., Figueiredo, M. A., Sahoo, P. K., Filho, C. A. M., & Da Costa, M. F. (2019). Geochemical mapping and estimation of background concentrations in soils of Carajás mineral province – eastern Amazonian craton, Brazil. Geochemistry: Exploration. Environment Analysis, 19, 431–447.

    Google Scholar 

  • Schaefer, CEGR, Cândido, HG, Corrêa, GR, Pereira, A., Nunes, JA. (2015). Solos desenvolvidos sobre canga ferruginosa no Brasil: uma revisão crítica e papel ecológico de termiteiros. em FF Carmo, LHY Kamino (Eds.)  Geossistemas Ferruginosos do Brasil: áreas prioritárias para conservação da diversidade geológica e biológica, patrimônio cultural e serviços ambientais. (1 ed, pp. 77–102). 3i Editora, Belo Horizonte.

  • Shah, M. H., Iqbal, J., Shaheen, N., Khan, N., Choudhary, M. A., & Akhter, G. (2012). Assessment of background levels of trace metals in water and soil from a remote region of Himalaya. Environmental Monitoring and Assessment, 184, 1243–1252.

    Article  CAS  Google Scholar 

  • Silva, A. G. G. (2011). Cadeia Produtiva do Cobre. Monografia Especialização em Engenharia de Recursos Minerais (124 p.). Universidade Federal de Minas Gerais

  • Souza, E. S., Fernandes, A. R., Braz, A. M. S., Oliveira, F. J., Alleoni, L. R. F., & Campos, M. C. C. (2018). Physical, chemical, and mineralogical attributes of a representative group of soils from the eastern Amazon region in Brazil. The Soil, 4, 195–212.

    Article  Google Scholar 

  • Souza, E. S., Dias, Y. N., Costa, H. S. C., Pinto, D. A., Oliveira, D. M., Falção, N. P. S., Teixeira, R. A., & Fernandes, A. R. (2019). Organic residues and biochar to immobilize potentially toxic elements in soil from a gold mine in the Amazon. Ecotoxicology and Environmental Safety, 169, 425–434.

    Article  Google Scholar 

  • Sundaray, S. K., Nayakb, B. B., Lina, S., & Bhatta, D. (2011). Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments-A case study: Mahanadi basin, India. Journal of Hazardous Materials, 186, 1837–1846.

    Article  CAS  Google Scholar 

  • Teixeira, J. B. G., Misi, A., & Silva, M. G. (2007). Supercontinent evolution and the Proterozoic metallogeny of South America. Gondwana Research, 11, 346–361.

    Article  CAS  Google Scholar 

  • Teixeira, R. A., De Souza, E. S., De Lima, M. W., Dias, Y. N., Pereira, W. V. S., & Fernades, A. R. (2019). Index of geoaccumulation and spatial distribution of potentially toxic elements in the Serra Pelada gold mine. Journal of Soils and Sediments, 19, 2934–2945.

    Article  CAS  Google Scholar 

  • Tomlinson, D. C., Wilson, D. J., Harris, C. R., & Jeffrey, D. W. (1980). Problem in assessment of heavy metals in estuaries and the formation of pollution index. Helgoländer Wissenschaftliche Meeresuntersuchungen, 33(1–4), 566–575.

    Article  Google Scholar 

  • USEPA-United States Environmental Protection Agency. (1998). Guidelines for ecological risk assessment, EPA/630/R-95/002F, U.S. Environmental protection agency, Washington, DC.

  • Venegas, VHA, Novais, RF, Barros, NF, Catarutti, RB, Lopes, AS (1999). Interpretação dos resultados da análise do solo. em AC Ribeiro, PTG Guimarães, VH Alvarez Venegas (Eds.) Recomendações para uso de corretivos e fertilizantes em Minas Gerais (5 Ed, pp. 25–32). Comissão de Fertilidade do Solo do Estado de Minas Gerais - CFSEMG, Viçosa.

  • Vincent, R. C., & Meguro, M. (2008). Influence of soil properties on the abundance of plant species in ferruginous rocky soils vegetation, southeastern Brazil. Revista Brasileira De Botânica, 31, 377–388.

    Google Scholar 

  • Wang, J., Cheng, Q., Xue, S., Rajendran, M., Wu, C., & Liao, J. (2018). Pollution characteristics of surface runoff under different restoration types in manganese tailing wasteland. Environmental Science and Pollution Research., 25, 9998–10005.

    Article  CAS  Google Scholar 

  • Wang, P., Liu, P., Menzies, N. W., Wehr, J. B., De Jonge, M. D., Howard, D. L., Kopittke, P. M., & Huang, L. (2016). Ferric minerals and organic matter change arsenic speciation in copper mine tailings. Environmental Pollution, 218, 835–843.

    Article  CAS  Google Scholar 

  • Wu, Z., Chen, Y., Han, Y., Ke, T., & Liu, Y. (2020). Identifying the influencing factors controlling the spatial variation of heavy metals in suburban soil using spatial regression models. Science of the Total Environment., 717, 1–11.

    Google Scholar 

  • Yang, J., Wang, W., Zhao, M., Chen, B., Dada, O. A., & Chu, Z. (2015). Spatial distribution and historical trends of heavy metals in the sediments of petroleum producing regions of the Beibu Gulf, China. Marine Pollution Bulletin, 91, 87–95.

    Article  CAS  Google Scholar 

  • Zhang, X., Yang, H., & Cui, Z. (2018). Evaluation and analysis of soil migration and distribution characteristics of heavy metals in iron tailings. Journal of Cleaner Production., 172, 475–480.

    Article  CAS  Google Scholar 

  • Zhao, Z., Shahrour, I., Bai, Z., Fan, W., Feng, L., & Li, H. (2013). Soils development in opencast coal mine spoils reclaimed for 1–13 years in the West-Northern Loess Plateau of China. European Journal of Soil Biology, 55, 40–46.

    Article  Google Scholar 

  • Zheng-Qi, X., Shi-Jun, N., Xian-Guo, T., & Cheng-Jiang, Z. (2008). Cálculo do Coeficiente de Toxicidade de Metais Pesados na Avaliação do Índice de Risco Ecológico Potencial [J]. Ciência e Tecnologia Ambiental, 2(8), 31.

  • Zhuang, W., & Gao, X. (2014). Integrated assessment of heavy metal pollution in the surface sediments of the Laizhou Bay and the coastal waters of the Zhangzi Island, China: comparison among typical marine sediment quality indices. PLOS ONE, 9(4), 1–17.

    CAS  Google Scholar 

Download references

Acknowledgements

The present study was supported by the Federal Rural University of Amazônia (UFRA), the National Council for Scientific and Technological Development (CNPq), the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES), the Pará Research Foundation (FAPESPA) and the Vale Institute of Technology (ITV).

Funding

This study was funded by Federal Rural University of Amazônia (UFRA), National Council for Scientific and Technological Development (CNPq), Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES) and Para Research Foundation (FAPESPA).

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Suellen Nunes de Araújo.

Ethics declarations

Conflicts of interest

Not applicable.

Human or animal rights

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Araújo, S.N., Ramos, S.J., Martins, G.C. et al. Copper mining in the eastern Amazon: an environmental perspective on potentially toxic elements. Environ Geochem Health 44, 1767–1781 (2022). https://doi.org/10.1007/s10653-021-01051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01051-5

Keywords

Navigation