Skip to main content

Advertisement

Log in

Phytoremediation of PCB: contaminated Algerian soils using native agronomics plants

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Pot cultivation experiments were conducted to assess the phytoremediation potential of two local agronomic plants, namely Avena sativa and Vicia sativa. Several soils with long-standing contamination and different levels of Polychlorinated biphenyl (PCB) contamination were used for this study. The soil samples came from different regions of Algeria and had different physico-chemical parameters. We studied the influence of these parameters on remediation potential of the two tested plants. The removal rate of the seven PCBs (PCB 28, 52, 101, 138, 153, 156 and 180) was examined after 40 and 90 days. The results showed that the presence of the plants reduced significantly the overall PCB content, ranging initially from 1.33–127.9 mg kg1. After 90 days, the forage plant Vicia sativa allowed us to reach an excess dissipation rate of 56.7% compared to the unplanted control for the most polluted soil. An average dissipation rate of 50% was obtained in the moderately polluted soil. The less contaminated soil had an excess dissipation rate of about 24% for both plants and a predominant dissipation of the low chlorinated PCBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abhilash, P., Jamil, S., & Singh, N. (2009). Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnology Advances, 27(4), 474–488. https://doi.org/10.1016/j.biotechadv.2009.04.002

    Article  CAS  Google Scholar 

  • Backe, C., Cousins, I. T., & Larsson, P. (2004). PCB in soils and estimated air-soil exchange fluxes of selected PCB congeners in the south of Sweden. Environmental Pollution, 128, 59–72. https://doi.org/10.1016/j.envpoprl.2003.08.038

    Article  CAS  Google Scholar 

  • Bergman, Å., Heindel, J. J., Jobling, S., Kidd, K., Zoeller, T. R., World Health Organization. (2013). State of the science of endocrine disrupting chemicals 2012. World Health Organization.

  • Cachada, A., Lopes, L., Hursthouse, A., Biasioli, M., Grčman, H., Otabbong, E., Davidson, C., & Duarte, A. (2009). The variability of polychlorinated biphenyls levels in urban soils from five European cities. Environmental Pollution, 157(2), 511–518. https://doi.org/10.1016/j.envpol.2008.09.002

    Article  CAS  Google Scholar 

  • Cetin, B. (2016). Investigation of PAHs, PCBs and PCNs in soils around a Heavily Industrialized Area in Kocaeli, Turkey: concentrations, distributions, sources and toxicological effects. Science of the Total Environment, 560, 160–169. https://doi.org/10.1016/j.scitotenv.2016.04.037

    Article  CAS  Google Scholar 

  • Chekol, T., Vough, L. R., & Chaney, R. L. (2004). Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Environment International, 30(6), 799–804. https://doi.org/10.1016/j.envint.2004.01.008

    Article  CAS  Google Scholar 

  • Chen, S.-J., Tian, M., Zheng, J., Zhu, Z.-C., Luo, Y., & Mai, B.-X. (2014). Elevated levels of Polychlorinated Biphenyls in plants, air, and soils at an e-waste site in southern China and enantioselective biotransformation of chiral PCBs in plants. Environmental Science and Technology, 48, 3847–3855. https://doi.org/10.1021/es405632v

    Article  CAS  Google Scholar 

  • Crampon, M., Bodilis, J., & Portet-Koltalo, F. (2018). Linking initial soil bacterial diversity and polycyclic aromatic hydrocarbons (PAHs) degradation potential. Journal of Hazardous Materials, 359, 500–509. https://doi.org/10.1016/j.jhazmat.2018.07.088

    Article  CAS  Google Scholar 

  • Crampon, M., Bureau, F., Akpa-Vinceslas, M., Bodilis, J., Machour, N., Le Derf, F., & Portet-Koltalo, F. (2014). Correlations between PAH bioavailability, degrading bacteria, and soil characteristics during PAH biodegradation in five diffusely contaminated dissimilar soils. Environmental Science and Pollution Research, 21(13), 8133–8145. https://doi.org/10.1007/s11356-014-2799-6

    Article  CAS  Google Scholar 

  • Eckley, N., & Selin, H. (2004). All talk, little action: precaution and European chemicals regulation. Journal of European Public Policy, 11(1), 78–105.

    Article  Google Scholar 

  • Erickson, M. D., & Kaley, R. G. (2011). Applications of polychlorinated biphenyls. Environmental Science and Pollution Research, 18(2), 135–151.

    Article  CAS  Google Scholar 

  • Fan, G., Cang, L., Fang, G., & Zhou, D. (2014). Surfactant and oxidant enhanced electrokinetic remediation of a PCBs polluted soil. Separation and Purification Technology, 123, 106–113.

    Article  CAS  Google Scholar 

  • Fouial-Djebbar, D., Ahmed, A.B.-H., & Budzinski, H. (2010). Determination of organochlorine compounds in coastal marine sediments from the southern west of the Mediterranean Sea. International Journal of Environmental Science & Technology, 7(2), 271–280.

    Article  CAS  Google Scholar 

  • Gan, S., Lau, E., & Ng, H. (2009). Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials, 172(2–3), 532–549. https://doi.org/10.1016/j.jhazmat.2009.07.118

    Article  CAS  Google Scholar 

  • Glüge, J., Steinlin, C., Schalles, S., Wegmann, L., Tremp, J., Breivik, K., Hungerbühler, K. and Bogdal, C. (2017). Import, use, and emissions of PCBs in Switzerland from 1930 to 2100. PloS one 12(10): e0183768.

  • Green, N. J., Jones, J. L., & Jones, K. C. (2001). PCDD/F deposition time trend to Esthwaite Water, UK, and its relevance to sources. Environmental Science & Technology, 35(14), 2882–2888.

    Article  CAS  Google Scholar 

  • Halfadji, A., Touabet, A., Portet-Koltalo, F., Le Derf, F., & Merlet-Machour, N. (2017). Concentrations and source identification of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in agricultural, urban/residential, and industrial soils, east of Oran (Northwest Algeria). Polycyclic Aromatic Compounds, 39(4), 299–310.

    Article  Google Scholar 

  • Jiang, Y., Wang, X., Zhu, K., Wu, M., Sheng, G., & Fu, J. (2011). Polychlorinated biphenyls contamination in urban soil of Shanghai: level, compositional profiles and source identification. Chemosphere, 83(6), 767–773. https://doi.org/10.1016/j.chemosphere.2011.02.077

    Article  CAS  Google Scholar 

  • Kaya, D., Imamoglu, I., Sanin, F. D., & Sowers, K. R. (2018). A comparative evaluation of anaerobic dechlorination of PCB-118 and Aroclor 1254 in sediment microcosms from three PCB-impacted environments. Journal of Hazardous Materials, 341, 328–335. https://doi.org/10.1016/j.jhazmat.2017.08.005

    Article  CAS  Google Scholar 

  • Kidd, K. A., Schindler, D. W., Hesslein, R. H., & Muir, D. C. (1998). Effects of trophic position and lipid on organochlorine concentrations in fishes from subarctic lakes in Yukon territory. Canadian Journal of Fisheries and Aquatic Sciences, 55(4), 869–881.

    Article  CAS  Google Scholar 

  • Kobasic, H. V., Calic, V., Tanik, T., Picer, M., Sangulin, J., & Franetovic, M. (2005). Research on the transport of PCBs with leachate water from contaminated soil. Organohalogen Compounds, 1026–4892(67), 1932–1936.

    Google Scholar 

  • Leroy, M.-C., Legras, M., Marcotte, S., Moncond’Huy, V., Machour, N., Le Derf, F., & Portet-Koltalo, F. (2015). Assessment of PAH dissipation processes in large-scale outdoor mesocosms simulating vegetated road-side swales. Science of the Total Environment, 520, 146–153. https://doi.org/10.1016/j.scitotenv.2015.03.020

    Article  CAS  Google Scholar 

  • Li, Y., Liang, F., Zhu, Y., & Wang, F. (2013). Phytoremediation of a PCB-contaminated soil by alfalfa and tall fescue single and mixed plants cultivation. Journal of Soils and Sediments, 13(5), 925–931. https://doi.org/10.1007/s11368-012-0618-6

    Article  CAS  Google Scholar 

  • Ma, Y., Du, X., Shi, Y., Xu, Z., Fang, J., Li, Z., & Li, F. (2015). Low concentration tailing and subsequent quick line enhanced remediation of volatile chlorinated hydrocarbon contaminated soil by mechanical soil aeration. Chemosphere, 131, 117–123.

    Article  Google Scholar 

  • Macek, T., Mackova, M., & Káš, J. (2000). Exploitation of plants for the removal of organics in environmental remediation. Biotechnology Advances, 18(1), 23–34.

    Article  CAS  Google Scholar 

  • Mackova, M., Uhlik, O., Lovecka, P., Viktorova, J., Novakova, M., Demnerova, K., Sylvestre, M. and Macek, T. (2010). Bacterial degradation of polychlorinated biphenyls. Geomicrobiology: Molecular and Environmental Perspective, Springer: 347–366.

  • Martinez, A., Erdman, N. R., Rodenburg, Z. L., Eastling, P. M., & Hornbuckle, K. C. (2012). Spatial distribution of chlordanes and PCB congeners in soil in Cedar Rapids, Iowa, USA. Environmental Pollution, 161, 222–228. https://doi.org/10.1016/j.envpol.2011.10.028

    Article  CAS  Google Scholar 

  • Meggo, R. E., Schnoor, J. L., & Hu, D. (2013). Dechlorination of PCBs in the rhizosphere of switchgrass and poplar. Environmental Pollution, 178, 312–321. https://doi.org/10.1016/j.envpol.2013.02.035

    Article  CAS  Google Scholar 

  • Melnyk, A. H., Wong, A., & Kassen, R. (2015). The fitness costs of antibiotic resistance mutations. Evolutionary Applications, 8(3), 273–283. https://doi.org/10.1016/j.scitotenv.2015.05.092

    Article  CAS  Google Scholar 

  • Mousa, M. A., Ganey, P. E., Quense, J., Madhukar, B. V., Chou, K., Giesy, J. P., Fischer, L. J., & Boyd, S. A. (1998). Altered biologic activities of commercial polychlorinated biphenyl mixtures after microbial reductive dechlorination. Environmental Health Perspectives, 106(suppl 6), 1409–1418.

    Article  CAS  Google Scholar 

  • Nadal, M., Schumacher, M., & Domingo, J. L. (2007). Levels of metals, PCBS, PCNs and PAHs in soils of a highly industrialized chemical/petrochemical area: Temporal trend. Chemosphere, 66, 267–276. https://doi.org/10.1016/j.chemosphere.2006.05.020

    Article  CAS  Google Scholar 

  • Noma, Y., Mitsuhara, Y., Matsuyama, K., & Sakai, S.-I. (2007). Pathways and products of the degradation of PCBS by the sodium dispersion method. Chemosphere, 68, 871–879.

    Article  CAS  Google Scholar 

  • Odabasi, M., Bayram, A., Elbir, T., Seyfioglu, R., Dumanoglu, Y., & Ornektekin, S. (2010). Investigation of soil concentrations of persistent organic pollutants, trace elements, and anions due to iron-steel plant emissions in an industrial region in Turkey. Water, Air, and Soil Pollution, 213, 375–388. https://doi.org/10.1007/s11270-010-0392-2

    Article  CAS  Google Scholar 

  • Pajuelo, E., Rodríguez-Llorente, I. D., Dary, M., & Palomares, A. J. (2008). Toxic effects of arsenic on Sinorhizobium-Medicago sativa symbiotic interaction. Environmental Pollution, 154(2), 203–211.

    Article  CAS  Google Scholar 

  • Passatore, L., Rossetti, S., Juwarkar, A. A., & Massacci, A. (2014). Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. Journal of Hazardous Materials, 278, 189–202. https://doi.org/10.1016/j.jhazmat.2014.05.051

    Article  CAS  Google Scholar 

  • Perez-Maldonado, I., Costilla-Salazar, R., Ilizaliturri-Hernandez, C. A., Espinosa-Reyes, G., Perez-Vazquez, F. J., & Fernandez-Macias, J. C. (2014). Assessment of the polychlorinated biphenyls (PCBs) levels in soil samples near an electric capacitor manufacturing industry in Morelos, Mexico. Journal of Environmental Science and Health, Part A, 49(11), 1244–1250.

    Article  CAS  Google Scholar 

  • Pino, N. J., Munera, L. M., & Penuela, G. A. (2019). Phytoremediation of soil contaminated with PCBs using different plants and their associated microbial communities. International Journal of Phytoremediation, 21(4), 316–324. https://doi.org/10.1080/15226514.2018.1524832

    Article  CAS  Google Scholar 

  • Portet-Koltalo, F., Oukebdane, K., Dionnet, F., & Desbène, P. L. (2008). Optimisation of the extraction of polycyclic aromatic hydrocarbons and their nitrated derivatives from diesel particulate matter using microwave-assisted extraction. Analytical and Bioanalytical Chemistry, 390(1), 389–398. https://doi.org/10.1007/s00216-007-1684-2

    Article  CAS  Google Scholar 

  • Qi, Z., Chen, T., Bai, S., Yan, M., Lu, S., Buekens, A., Yan, J., Bulmau, C., & Li, X. (2014). Effect of the temperature and particle size on the thermal desorption of PCBs from contaminated soil. Environmental Science and Pollution Research, 21, 4697–4704. https://doi.org/10.1007/s11356-013-2392-4

    Article  CAS  Google Scholar 

  • Rachdawong, P., & Christensen, E. R. (1997). Determination of PCB sources by a principal component method with nonnegative constraints. Environmental Science & Technology, 31(9), 2686–2691.

    Article  CAS  Google Scholar 

  • Radonić, J., Miloradov, M. V., Sekulić, M. T., Kiurski, J., Djogo, M., & Milovanovic, . (2011). The octanol–air partition coefficient, KOA, as a predictor of gas–particle partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenyls at industrial and urban sites. Journal of the Serbian Chemical Society, 76(3), 447–458.

    Article  Google Scholar 

  • Reddy, A. V. B., Moniruzzaman, M., & Aminabhavi, T. M. (2019). Polychlorinated biphenyls (PCBs) in the environment: Recent updates on sampling, pretreatment, cleanup technologies and their analysis. Chemical Engineering Journal, 358, 1186–1207. https://doi.org/10.1016/j.cej.2018.09.205

    Article  CAS  Google Scholar 

  • Rein, A., Fernqvist, M. M., Mayer, P., Trapp, S., Bittens, M., & Karlson, U. G. (2007). Degradation of PCB congener by bacterial strains. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-007-1175-6

    Article  Google Scholar 

  • Rosińska, A., & Karwowska, B. (2017). Dynamics of changes in coplanar and indicator PCB in sewage sludge during mesophilic methane digestion. Journal of Hazardous Materials, 323, 341–349. https://doi.org/10.1016/j.jhazmat.2016.04.016

    Article  CAS  Google Scholar 

  • Ross, G. (2004). The public health implications of polychlorinated biphenyls (PCBs) in the environment. Ecotoxicology and Environmental Safety, 59(3), 275–291. https://doi.org/10.1016/j.ecoenv.2004.06.003

    Article  CAS  Google Scholar 

  • Ruzickova, P., Klanova, J., Cupr, P., Lammel, G., & Holoubek, I. (2008). An assessment of air-soil exchange of polychlorinated biphenyls and organochlorine pesticides across Central and Southern Europe. Environmental Science and Technology, 42, 179–185. https://doi.org/10.1021/es071406fCCC

    Article  Google Scholar 

  • Stella, T., Covino, S., Burianova, E., Filipova, A., Kresinova, Z., Voriskova, J., Vetrovsky, T., Baldrian, P., & Cajthaml, T. (2015). Chemical and microbiological characterization of an aged PCB-contaminated soil. Science of Total Environment, 533, 177–186. https://doi.org/10.1016/j.scitotenv.2015.06.019

    Article  CAS  Google Scholar 

  • Stratton, C. L., & Sosebee, J. B. (1976). PCB and PCT contamination of the environment near sites of manufacture and use. Environmental Science & Technology, 10(13), 1229–1233.

    Article  CAS  Google Scholar 

  • Strek, H.J. & Weber, J.B. (1982). Behaviour of polychlorinated biphenyls (PCBs) in soils and plants. Environmental Pollution 28(A): 291–312.

  • Sun, H., Qi, Y., Zhang, D., Li, Q. X., & Wang, J. (2016). Concentrations, distribution, sources and risk assessment of organohalogenated contaminants in soils from Kenya, Eastern Africa. Environmental Pollution, 209, 177–185. https://doi.org/10.1016/j.envpol.2015.11.040

    Article  CAS  Google Scholar 

  • Sun, J., Pan, L., & Zhu, L. (2018). Formation of hydroxylated and methoxylated polychlorinated biphenyls by Bacillus subtilis: New insights into microbial metabolism. Science of Total Environment, 613–614, 54–61. https://doi.org/10.1016/j.scitotenv.2017.09.063

    Article  CAS  Google Scholar 

  • Terzaghi, E., Vergani, L., Mapelli, F., Borin, S., Raspa, G., Zanardini, E., Morosini, C., Anelli, S., Nastasio, P., Sale, V. M., Armiraglio, S., & Di Guardo, A. (2019). Rhizomediation of weathered PCBs in heavily contaminated agricultural soil: Results of a biostimulation trial in semi field conditions. Science of Total Environment, 686, 484–496. https://doi.org/10.1016/j.scitoenv.2019.05.458

    Article  CAS  Google Scholar 

  • Terzaghi, E., Zanardini, E., Morosini, C., Raspa, G., Borin, S., Mapelli, F., Vergani, L., & Di Guardo, A. (2018). Rhizoremediation half-lives of PCBs: Role of congener composition, organic carbon forms, bioavailability, microbial activity, plant species and soil conditions, on the prediction of fate and persistence in soil. Science of the Total Environment, 612, 544–560. https://doi.org/10.1016/j.scitotenv.2017.08.189

    Article  CAS  Google Scholar 

  • Toussaint, J.-P., Pham, T. T. M., Barriaut, D., & Sylvestre, M. (2012). Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. Applied Microbiology and Biotechnology, 95, 1589–1603. https://doi.org/10.1007/s00253-011-3824-z

    Article  CAS  Google Scholar 

  • Tremolada, P., Guazzoni, N., Smillovitch, L., Moia, F., & Comolli, R. (2012). The effect of the Organic Matter Composition on POP Accumulation in soil. Water Air Soil Pollution, 223, 4539–4556. https://doi.org/10.1007/s11270-012-1216-3

    Article  CAS  Google Scholar 

  • Tu, C., Teng, Y., Luo, Y., Sun, X., Deng, S., Li, Z., Liu, W., & Xu, Z. (2011). PCB removal, soil enzyme activities, and microbial community structures during the phytoremediation by alfalfa in field soils. Journal of Soils and Sediments, 11(4), 649–656. https://doi.org/10.1007/s11368-011-0344-5

    Article  CAS  Google Scholar 

  • Tuna, C., and Orak, A. (2007). The role of intercropping on yield potential of common vetch (Vicia sativa L.)/oat (Avena sativa L.) cultivated in pure stand and mixtures. Journal of Agricultural and Biological Science 2(2): 14–19.

  • Wang, M., Safe, S., Hearon, S. E., & Phillips, T. D. (2019). Strong adsorption of polychlorinated biphenyls by processed montmorillonite clays: Potential applications as toxin enterosorbents during disasters and floods. Environmental Pollution, 255, 113210. https://doi.org/10.1016/j.envpol.2019.113210

    Article  CAS  Google Scholar 

  • Wang, Y., Luo, C.-L., Li, J., Yin, H., Li, X.-D., & Zhang, G. (2011). Characterization and risk assessment of polychlorinated biphenyls in soils and vegetations near an electronic waste recycling site. SoUth China. Chemosphere, 85(3), 344–350.

    Article  CAS  Google Scholar 

  • Wilkins, D. (1957). A technique for the measurement of lead tolerance in plants. Nature, 180(4575), 37.

    Article  CAS  Google Scholar 

  • Youn, L. S., Kim, B.-N., Choi, Y.-W., Yoo, K.-S., Kim, Y.-H., & Min, J. (2012). Growth response of Avena sativa in amino-acids-rich soils converted from phenol-contaminated soils by Corynebacterium glutamicum. Journal of Microbiology and Biotechnology, 22(4), 541–546. https://doi.org/10.4014/jmb.1108.08089

    Article  CAS  Google Scholar 

  • Zhou, J. L., Siddiqui, E., Ngo, H. H., & Guo, W. (2014). Estimation of uncertainty in the sampling and analysis of polychlorinated biphenyls and polycyclic aromatic hydrocarbons from contaminated soil in Brighton, UK. Science of the Total Environment, 497–498, 163–171.

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the Algerian Ministry of Higher Education and Scientific Research for providing fruitful funding to complete this research work at the Laboratory of Organic and Bioorganic Chemistry, Reactivity and Analysis, UMR CNRS 6014, IUT Evreux, University of Rouen-Normandy, France. This work was also supported by the European Regional Development Fund (ERDF) N° HN0001343, the European Union’s Horizon 2020 Research Infrastructures program (Grant Agreement 731077), the Région Normandie, and the Laboratoire d’Excellence (LabEx) SynOrg (ANR-11-LABX-0029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Merlet-Machour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1790 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halfadji, A., Portet-Koltalo, F., Touabet, A. et al. Phytoremediation of PCB: contaminated Algerian soils using native agronomics plants. Environ Geochem Health 44, 117–132 (2022). https://doi.org/10.1007/s10653-021-01049-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01049-z

Keywords

Navigation