Skip to main content
Log in

Comparison of the effectiveness of biochar vs. magnesite amendments to immobilize metals and restore a polluted soil

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Here we addressed the remediation of a soil severely contaminated by Cu, Cd, Pb and Zn. In this regard, we tested the capacity of magnesite and biochar, inorganic and organic soil amendments, respectively, to reduce metal availability and improve soil properties. To this end, 1-kg pots containing the polluted soil were amended with either magnesite or biochar. Metal availability and soil properties were then measured at days 15 and 75. Also, to evaluate the impact of the two treatments on plant growth, we conducted experimental trials with Brassica juncea L. and compost addition. Both amendments, but particularly magnesite, markedly decreased metal availability. Soil properties were also enhanced, as reflected by increases in the cation exchangeable capacity. However, plant growth was inhibited by magnesite amendment. This observation could be attributable to an increase in soil pH and cation exchange capacity as well as a high Mg concentration. In contrast, biochar increased biomass production but decreased the quantity of metals recovered when the plants are harvested. In conclusion, on the basis of our results, we propose magnesite as a suitable approach for stabilizing contaminated soils (or even spoil heaps) where revegetation is not a priority. In contrast, although biochar has a lower, but still significant, capacity to immobilize metals, it can be used to restore natural soil properties and thus favor plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adl, S. M. (2008). Setting the tempo in land remediation: Short-term and long-term patterns in biodiversity recovery. Microbes and Environments, 23, 000–000.

    Article  Google Scholar 

  • Alhar, M. A. M., Thompson, D. F., & Oliver, I. W. (2021). Mine spoil remediation via biochar addition to immobilise potentially toxic elements and promote plant growth for phytostabilisation. Journal of Environmental Management, 277, 111500.

    Article  CAS  Google Scholar 

  • Anawar, H. M., Akter, F., Solaiman, Z. M., & Strezov, V. (2015). Biochar: an emerging panacea for remediation of soil contaminants from mining, industry and sewage wastes. Pedosphere, 25, 654–665.

    Article  CAS  Google Scholar 

  • Baragaño, D., Gallego, J. L. R., Baleriola, G., & Forján, R. (2020). Effects of different in situ remediation strategies for an as-polluted soil on human health risk, soil properties, and vegetation. Agronomy, 10, 759.

    Article  Google Scholar 

  • Beesley, L., & Marmiroli, M. (2011). The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution, 159, 474–480.

    Article  CAS  Google Scholar 

  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., et al. (2014). Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize? J. Journal of Hazardous Materials, 266, 141–166.

    Article  CAS  Google Scholar 

  • Buol, S. W., Sanchez, P. A., Cate, R. B., & Granger, M. A. (1975). Soil fertility capability classification. In E. Bornemizza & A. Alvarado (Eds.), Soil management in tropical America.Raleigh.

    Google Scholar 

  • Compant, S., Clément, Ch., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42, 669–678.

    Article  CAS  Google Scholar 

  • Chirakkara, R. A., Cameselle, C., & Reddy, K. R. (2016). Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants. Reviews in Environmental Science and Bio/technology, 15, 299–326.

    Article  CAS  Google Scholar 

  • Chimenos, J. M., Fernández, A. I., Segarra, M., Fernández, M. A., & Espiell, F. (2000). Utilización de Magnesia para la estabilización de tierras contaminadas. Revista Técnica Residuos, 55, 69–72.

    Google Scholar 

  • Clemente, R., Hartley, W., Riby, P., Dickinson, N. M., & Lepp, N. W. (2009). Trace element mobility in a contaminated soil two years after field amendment with a green waste compost mulch. Environmental Pollution, 158, 1644–1651.

    Article  Google Scholar 

  • Concas, S., Lattanzi, P., Bacchetta, G., Barbafieri, M., Vacca, A. (2015). Zn, Pb and Hg contents of Pistacia lentiscus L. grown on heavy metal-rich soils: Implications for phytostabilization. Water, Air, and Soil Pollution, 226–340.

  • Covelo, E. F., Vega, F. A., & Andrade, M. L. (2007). Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils. I. Selectivity sequences. Journal of Hazardous Materials, 147, 852–861.

    Article  CAS  Google Scholar 

  • Gallego, J. R., Rodríguez-Valdés, E., Esquinas, N., Fernández-Braña, A., & Afif, E. (2016). Insights into a 20-ha multi-contaminated brownfield megasite: An environmental forensics approach. Science of the Total Environment, 563–564, 683–692.

    Article  Google Scholar 

  • Forján, R., Rodríguez-Vila, A., Pedrol, N., & Covelo, E. F. (2018). Application of Compost and Biochar with Brassica juncea L. to Reduce Phytoavailable Concentrations in a Settling Pond Mine Soil. Waste and Biomass Valorization., 9, 821–834.

    Article  Google Scholar 

  • Forján, R., Asensio, V., Rodríguez-Vila, A., & Covelo, E. F. (2016). Contributions of a compost biochar mixture to the metal sorption capacity of a mine tailing. Environmental Science and Pollution Research, 23, 2595–2602.

    Article  Google Scholar 

  • Fowles, M. (2007). Black carbon sequestration as an alternative to bioenergy. Biomass and Bioenergy, 31, 426–432.

    Article  CAS  Google Scholar 

  • García, M. A., Chimenos, J. M., Fernández, A. I., Miralles, L., Segarra, M., & Espiell, F. (2004). Low-grade MgO used to stabilize heavy metals in highly contaminated soils. Chemosphere, 56, 481–491.

    Article  Google Scholar 

  • Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. Journal of Hazardous Materials, 169, 1–15.

    Article  CAS  Google Scholar 

  • Hattab, N., Soubrand, M., Guégan, R., Motelica-Heino, M., Bourrat, X., Faure, O., Buchardon, J. L., et al. (2014). Effect of organic amendments on the mobility of trace elements in phytoremediated techno-soils: role of the humic substances. Environmental Science and Pollution Research, 21, 10470–10480.

    Article  CAS  Google Scholar 

  • Hamid, Y., Tang, L., Lu, M., Hussain, B., Zehra, A., Khan, M. B., et al. (2019). Assessing the immobilization efficiency of organic and inorganic amendments for cadmium phytoavailability to wheat. Journal of Soil and Sediments, 19, 3708–3717.

    Article  CAS  Google Scholar 

  • Han, Y., Chen, X., & Choi, B. (2019). Effect of freeze-thaw cycles on phosphorus fractions and their availability in biochar-amended mollisols of Northeast China. Sustainability, 11, 1006.

    Article  CAS  Google Scholar 

  • Hazelton, P., & Murphy, B. (2007). Interpreting soils test resulting. What do all the numbers means? CSIRO Publishing.

    Book  Google Scholar 

  • Hendershot, W. H., & Duquette, M. (1986). A simple barium chloride methods for determining cation exchange capacity and exchangeable cations. Soil Science Society of America Journal, 50, 605–608.

    Article  Google Scholar 

  • Hidalgo, L. (1993). Tratado de (viticulture). . Mundi Prensa.

    Google Scholar 

  • Houba, V. J. G., Temminghoff, E. J. M., Gaikhorst, G. A., & Van Vark, W. (2000). Soil analysis procedures using 0,01M calcium chloride as extraction reagent. Communications in Soil Science and Plant Analysis, 3, 1299–1396.

    Article  Google Scholar 

  • Ippolito, J. A., Ducey, T. F., Cantrell, K. B., Nova, J. M., & Lentz, R. D. (2016). Designer, acidic biochar influences calcareous soil characteristics. Chemosphere, 142, 184–191.

    Article  CAS  Google Scholar 

  • Kammann, C. I., Schmidt, H. P., Messerschmidt, N., Linsel, S., Steffens, D., et al. (2015). Plant growth improvement mediated by nitrate capture in cocomposted biochar. Scientific Reports, 5, 11080.

    Article  Google Scholar 

  • Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments. Waste Management, 28, 215–225.

    Article  CAS  Google Scholar 

  • Kushwaha, A., Rania, R., Kumara, S., & Gautama, A. (2016). Heavy metal detoxification and tolerance mechanisms in plants: Implications for phytoremediation. Environmental Reviews, 24, 39–51.

    Article  CAS  Google Scholar 

  • Lebrun, M., Van Poucke, R., Miard, F., Scippa, G. S., Bourgerie, S., Morabito, D., & Tack, F. M. G. (2021). Effects of carbon-based materials and redmuds on metal(loid) immobilization and growth of Salix dasyclados Wimm. on a former mine Technosol contaminated by arsenic and lead. Land Degradation and Development., 32, 467–481.

    Article  Google Scholar 

  • Lebrun, M., Miard, F., Nandillon, R., Scippa, G. S., Bourgerie, S., & Morabito, D. (2019). Biochar effect associated with compost and iron to promote Pb and As soil stabilization and Salix viminalis L. growth. Chemosphere, 222, 810–822.

    Article  CAS  Google Scholar 

  • Lehmann, M., Zouboulis, A. I., & Matis, K. A. (1999). Removal of metal ions from dilute aqueous solutions: A comparative study of inorganic sorbent materials. Chemosphere, 39, 881–892.

    Article  CAS  Google Scholar 

  • Liu, L., Li, W., Song, W., & Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment, 633, 206–219.

    Article  CAS  Google Scholar 

  • Lu, H., Zhang, W., Yang, Y., Huang, X., Wang, Z., & Qiu, R. (2012). Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Research, 46, 854–862.

    Article  CAS  Google Scholar 

  • Lu, K. P., Yang, X., Gielen, G., Bolan, N., Ok, Y. S., Niazi, N. K., et al. (2017). Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of Environmental Management, 186, 285–292.

    Article  CAS  Google Scholar 

  • Masindi, V., Madzivire, G., & Tekere, M. (2018). Reclamation of water and the synthesis of gypsum and limestone from acid mine drainage treatment process using a combination of pre-treated magnesite nanosheets, lime, and CO2 bubbling. Water Resources and Industry, 20, 1–14.

    Article  Google Scholar 

  • Mehlich, A. (2008). Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15, 1984.

    Google Scholar 

  • Navarro, A., & Cardellach, E. (2009). Mobilization of Ag, heavy metals and Eu from the waste deposit of the Las Herrerias mine (Almería, SE Spain). Environmental Geology, 56, 1389–1404.

    Article  CAS  Google Scholar 

  • Norini, M. P., Thouin, H., Miard, F., Battaglia-Brunet, F., Gautret, P., Guégan, R., Le Forestier, L., Morabito, D., Bourgerie, S., & Motelica-Heino, M. (2019). Mobility of Pb, Zn, Ba, As and Cd toward soil pore water and plants (willow and ryegrass) from a mine soil amended with biochar. Journal of environmental management, 232, 117–130.

    Article  CAS  Google Scholar 

  • Oustriere, N., Marchand, L., Rosette, G., Friesl-Hanl, W., & Mench, M. (2017). Wood-derived-biochar combined with compost or iron grit for in situ stabilization of Cd, Pb, and Zn in a contaminated soil. Environmental Science and Pollution Research, 24, 7468–7481.

    Article  CAS  Google Scholar 

  • Penido, E. S., Martins, G. C., Mendes, T. B. M., Melo, L. C. A., do Rosário, L., & Guilherme, L. R. G. (2019). Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Ecotoxicology and Environmental Safety, 172, 326–333.

    Article  CAS  Google Scholar 

  • Pérez-Esteban, J., Escolástico, C., Moliner, A., Masaguer, A., & Ruiz-Fernández, J. (2014). Phytostabilization of metals in mine soils using Brassica juncea L. in combination with organic amendments. Plant and Soil, 377, 97–109.

    Article  Google Scholar 

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.

    Article  CAS  Google Scholar 

  • Pinto, A. P., Varennes, A., Fonseca, R., & Martins-Teixeira, D., et al. (2015). Phytoremediation of soils contaminated with heavy metals: Techniques and strategies. In A. A. Ansari, S. S. Gill, R. Gill, G. Lanza, & L. Newman (Eds.), Phytoremediation: Management of environmental contaminants.Springer. https://www.springer.com/gp/book/9783319401461.

  • Porta, J. (1986). Técnicas y Experimentos de Edafología. Collegi Oficial D´enginyers Agronoms de Catalunya. Barcelona.

  • Qiao, J., Liu, T., Wang, X., Li, F., Lv, Y., Cui, J., et al. (2018). Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero valent iron and biochar to contaminated paddy soils. Chemosphere, 195, 260–271.

    Article  CAS  Google Scholar 

  • Rascioa, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180, 169–181.

    Article  Google Scholar 

  • Rocco, C., Seshadri, B., Adamo, P., Bolan, N. S., Mbene, K., & Naidu, R. (2018). Impact of waste-derived organic and inorganic amendments on the mobility and bioavailability of arsenic and cadmium in alkaline and acid soils. Environmental Science and Pollution Research, 25, 25896–25905.

    Article  CAS  Google Scholar 

  • Saxena, G., Purchase, D., Mulla, S. I., Saratale, G. D., & Bharagava, R. N. (2019). Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues, and future prospects. Reviews of Environmental Contamination and Toxicology, 249, 71–131.

    Google Scholar 

  • Shan, Q., Zhang, Y., & Xue, X. (2013). Removal of copper from wastewater by using the synthetic nesquehonite. Environmental Progress & Sustainable Energy, 32, 543–546.

    Article  CAS  Google Scholar 

  • Shen, Z., Pan, S., Hou, D., O’Connor, D., Jin, F., Mo, L., et al. (2019). Temporal effect of MgO reactivity on the stabilization of lead contaminated soil. Environment International, 131, 104990.

    Article  CAS  Google Scholar 

  • Sierra, C., Gallego, J. R., Afif, E., Menéndez-Aguado, J. M., & González-Coto, F. (2010). Analysis of soil washing effectiveness to remediate a brownfield polluted with pyrite ashes. Journal of Hazardous Materials, 180, 602–608.

    Article  CAS  Google Scholar 

  • Smith, C. (1996.) Buffering of cementations hazardous waste compositions containing electric arc furnace dust. US Patent 5,569,152.

  • Tang, Q., Tang, X., Li, Z., Chen, Y., Kou, N., & Sun, Z. (2009). Adsorption and desorption behaviour of Pb (II) on a natural kaolin: equilibrium, kinetic and thermodynamic studies. Journal of Chemical Technology and Biotechnology, 84, 1371–1380.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Chang, S., & Klasson, K. T. (2011). Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. Journal of Hazardous Materials, 190, 432–441.

    Article  CAS  Google Scholar 

  • Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 3, 268–292.

    Google Scholar 

  • Wang, L., Chen, L., Cho, D. W., Tsang, D. C. W., Yang, J., Hou, D., et al. (2019). Novel synergy of Si-rich minerals and reactive MgO for stabilisation/solidification of contaminated sediment. Journal of Hazardous Materials, 365, 695–706.

    Article  CAS  Google Scholar 

  • Yuan, P., Wang, J., Pan, Y., Shena, B., & Wu, C. H. (2019). Review of biochar for the management of contaminated soil: Preparation, application and prospect. Science of Total Environment, 659, 473–490.

    Article  CAS  Google Scholar 

  • Zhang, W. H., Mao, S. Y., Chen, H., Huang, L., & Qiu, R. L. (2013). Pb (II) and Cr (VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions. Bioresource Technology, 147, 545–552.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the research project NANOBIOWASH CTM2016-75894-P (AEI/FEDER, UE). Diego Baragaño obtained a grant from the “Formación del Profesorado Universitario” program, financed by the “Ministerio de Educación, Cultura y Deporte de España.” We would also like to thank Magnesitas Navarras S.A. for providing magnesite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Forján.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baragaño, D., R. Gallego, J.L. & Forján, R. Comparison of the effectiveness of biochar vs. magnesite amendments to immobilize metals and restore a polluted soil. Environ Geochem Health 43, 5053–5064 (2021). https://doi.org/10.1007/s10653-021-00981-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00981-4

Keywords

Navigation