Skip to main content
Log in

The thermodynamic stability, potential toxicity, and speciation of metals and metalloids in Tehran runoff, Iran

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Surface runoff is the most significant source of water in dry cities like Tehran. The surface runoff is polluted by heavy metals, which their risk level is a function of their speciation. Herein, Tehran runoff quality and the speciation of metals and metalloids were investigated. The results of quality showed that oxidation–reduction potential (Eh) and pH ranged from + 186 to + 230 mV and from 7.31 to 10.29, respectively. Cluster analysis indicated that Cr, Si, Mn, Fe, Pb, Se, Th, Ba, Ni, Li, and Sr had similar behaviors and origins, and salinity played an active role in restricting their concentrations. Eh and dissolved oxygen (DO) negatively affected the concentrations of all the studied elements. The speciation model (according to HSC Chemistry program) exhibited that all the studied elements are stable; however, in two cases, they would become unstable (pH < 7, Eh <  − 480 mV or Eh > 1100 mV) and (pH > 10, Eh <  − 570 mV or Eh > 970 mV). Also, Ba, Cd, Li, Mn, Al, As, Sr, Cr, Si, and Se are present in bioavailable species and As and Cd in the runoff exist in high toxic oxidation states of + 3 and + 2, respectively. The linear regression of Cu, Co, Cd, Zn, and As with Eh provided a good fit, and all of these metals were significant at levels 1 and 5%. Finally, it is recommended to continuously monitor the Eh–pH changes for investigating the potential toxicity of metals and predicting the metal pollution by regression equations in any other stations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal, S. K. (2009). Heavy metal pollution. APH publishing.

    Google Scholar 

  • Al Dahaan, S., Al-Ansari, N., & Knutsson, S. (2016). Influence of groundwater hypothetical salts on electrical conductivity total dissolved solids. Engineering, 8(11), 823–830. https://doi.org/10.4236/eng.2016.811074

    Article  CAS  Google Scholar 

  • Aldana, G., Hernández, M., Cram, S., Arellano, O., Morton, O., & Ponce de León, C. (2018). Trace metal speciation in a wastewater wetland and its bioaccumulation in tilapia Oreochromis niloticus. Chemical Speciation & Bioavailability, 30(1), 23–32. https://doi.org/10.1080/09542299.2018.1452635

    Article  CAS  Google Scholar 

  • AlQutob, M. A., Shqair, H., Malassa, H., Davis, J. M., & Al-Rimawi, F. (2016). Determination of trace metals in harvested rainwater after the November 2012 bombing in Gaza by using ICP/MS. Journal of Materials and Environmental Science, 7(9), 3477–3488

    CAS  Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Public Health Association. http://www.ncbi.nlm.nih.gov/pubmed/17489283

  • Aqeel Ashraf, M., Jamil Maah, M., Yusoff, I., & Ghararibreza, M. (2012). Speciation of heavy metals in the surface waters of a former tin mining catchment. Chemical Speciation & Bioavailability, 24(1), 1–12. https://doi.org/10.3184/095422912X13259575370081

    Article  CAS  Google Scholar 

  • Bakyayita, G. K., Norrström, A. C., & Kulabako, R. N. (2019). Assessment of levels, speciation, and toxicity of trace metal contaminants in selected shallow groundwater sources, surface runoff, wastewater, and surface water from designated streams in Lake Victoria Basin, Uganda. Journal of Environmental and Public Health. https://doi.org/10.1155/2019/6734017

    Article  Google Scholar 

  • Bechet, B., Durin, B., Legret, M., & Le Cloirec, P. (2006). Colloidal speciation of heavy metals in runoff and interstitial waters of a retention/infiltration pond. Water Science and Technology, 54(6–7), 307–314. https://doi.org/10.2166/wst.2006.627

    Article  CAS  Google Scholar 

  • Bîrsan, E., & Constantin, L. (2010). Speciation of heavy metals in surface waters polluted by anthropogenic activities. Studii ÅŸi Cercetări ÅžtiinÅ£ifice Chimie ÅŸi Inginerie Chimică, Biotehnologii, Industrie Alimentară, 11(4), 439–448

    Google Scholar 

  • Chenery, S. R., Sarkar, S. K., Chatterjee, M., Marriott, A. L., & Watts, M. J. (2020). Heavy metals in urban road dusts from Kolkata and Bengaluru, India: Implications for human health. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00467-4

    Article  Google Scholar 

  • Cheng, M. C., & You, C. F. (2010). Sources of major ions and heavy metals in rainwater associated with typhoon events in southwestern Taiwan. Journal of Geochemical Exploration, 105(3), 106–116. https://doi.org/10.1016/j.gexplo.2010.04.010

    Article  CAS  Google Scholar 

  • Chubaka, C. E., Whiley, H., Edwards, J. W., & Ross, K. E. (2018). Lead, zinc, copper, and cadmium content of water from south Australian rainwater tanks. International Journal of Environmental Research and Public Health, 15(7), 1551. https://doi.org/10.3390/ijerph15071551

    Article  CAS  Google Scholar 

  • Chughtai, M., Mustafa, S., & Mumtaz, M. (2014). Study of physicochemical parameters of rainwater: A case study of Karachi, Pakistan. American Journal of Analytical Chemistry, 5, 235–242. https://doi.org/10.4236/ajac.2014.54029

    Article  CAS  Google Scholar 

  • Dabgerwal, D. K., & Tripathi, S. K. (2016). Assessment of surface water quality using hierarchical cluster analysis. International Journal of Environment, 5(1), 32–44. https://doi.org/10.3126/ije.v5i1.14563

    Article  Google Scholar 

  • Davis, J. B. (1973). Statistic and data analysis in geology. Wiley.

    Google Scholar 

  • El-Shahawi, M. S., & Al-Saidi, H. M. (2013). Dispersive liquid-liquid microextraction for chemical speciation and determination of ultra-trace concentrations of metal ions. TrAC Trends in Analytical Chemistry, 44, 12–24. https://doi.org/10.1016/j.trac.2012.10.011

    Article  CAS  Google Scholar 

  • Emad, A. M. S., Ahmed, M. T., & Eethar, M. A. O. (2012). Assessment of water quality of Euphrates River using cluster analysis. Journal of Environmental Protection. https://doi.org/10.4236/jep.2012.312180

    Article  Google Scholar 

  • Ferronato, C., Antisari, L. V., Modesto, M. M., & Vianello, G. (2013). Speciation of heavy metals at water-sediment interface. EQA-International Journal of Environmental Quality, 10(10), 51–64. https://doi.org/10.6092/issn.2281-4485/3932

    Article  Google Scholar 

  • Fytianos, K. (2001). Speciation analysis of heavy metals in natural waters: A review. Journal of AOAC International, 84(6), 1763–1769

    Article  CAS  Google Scholar 

  • Gupta, B., Kumar, R., & Rani, M. (2013). Speciation of heavy metals in water and sediments of an urban lake system. Journal of Environmental Science and Health, Part A, 48(10), 1231–1242. https://doi.org/10.1080/10934529.2013.776886

    Article  CAS  Google Scholar 

  • Haghnazari, L., Mirzaei, N., Arfaeinia, H., Karimyan, K., Sharafi, H., & Fattahi, N. (2018). Speciation of As (ΙΙΙ)/As (V) and total inorganic arsenic in biological fluids using new mode of liquid-phase microextraction and electrothermal atomic absorption spectrometry. Biological Trace Element Research, 183(1), 173–181. https://doi.org/10.1007/s12011-017-1118-8

    Article  CAS  Google Scholar 

  • Hailemichael, A., Crouch, A. M., Manohar, A., & Afewerki, M. (2019). Separation, analysis and validation of metal ions in aqueous samples using capillary electrophoresis. International Research Journal of Pure and Applied Chemistry, 18(4), 1–9. https://doi.org/10.9734/irjpac/2019/v18i430098

    Article  CAS  Google Scholar 

  • Hasan, N. Y., Sulaeman, A., & Ariesyady, H. D. (2019). Water quality indices for rainwater quality assessment in bandung urban region. IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/669/1/012044

    Article  Google Scholar 

  • Heyworth, J. S., Glonek, G., Maynard, E. J., Baghurst, P. A., & Finlay-Jones, J. (2006). Consumption of untreated tank rainwater and gastroenteritis among young children in South Australia. International Journal of Epidemiology, 35(4), 1051–1058. https://doi.org/10.1093/ije/dyl105

    Article  CAS  Google Scholar 

  • Hou, H., Takamatsu, T., Koshikawa, M. K., & Hosomi, M. (2005). Trace metals in bulk precipitation and throughfall in a suburban area of Japan. Atmospheric Environment, 39(20), 3583–3595. https://doi.org/10.1016/j.atmosenv.2005.02.035

    Article  CAS  Google Scholar 

  • Huang, H. H. (2016). The Eh–pH diagram and its advances. Metals. https://doi.org/10.3390/met60

    Article  Google Scholar 

  • Huang, J., Yuan, F., Zeng, G., Li, X., Gu, Y., Shi, L., & Shi, Y. (2017). Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration. Chemosphere, 173, 199–206. https://doi.org/10.1016/j.chemosphere.2016.12.137

    Article  CAS  Google Scholar 

  • Igbinosa, I. H., & Aighewi, I. T. (2017). Assessment of the physicochemical and heavy metal qualities of rooftop harvested rainwater in a rural community. Global Challenges, 1(6), 1700011. https://doi.org/10.1002/gch2.201700011

    Article  Google Scholar 

  • Jorgensen, C. K. (2012). Oxidation numbers and oxidation states. Springer.

    Google Scholar 

  • Kadhum, S. A. (2020). A preliminary study of heavy metals pollution in the sandy dust storms and its human risk assessment from middle and south of Iraq. Environmental Science and Pollution Research, 27(8), 8570–8579. https://doi.org/10.1007/s11356-019-07380-4

    Article  CAS  Google Scholar 

  • Kanat, G., Ä°kizoÄŸlu, B., Ergüven, G. Ö., & Akgün, B. (2017). Determination of pollution and heavy metal fractions in golden horn sediment sludge (Istanbul, Turkey). Polish Journal of Environmental Studies, 27(6), 1–7

    Google Scholar 

  • Karbassi, A. R., & Biati, A. (2012). Guidelines for sampling and toxicological analysis of sediment. University of Tehran.

    Google Scholar 

  • Karbassi, A. R., Monavari, S. M., Bidhendi, G. R. N., Nouri, J., & Nematpour, K. (2008). Metal pollution assessment of sediment and water in the Shur River. Environmental Monitoring and Assessment, 147(1–3), 107. https://doi.org/10.1007/s10661-007-0102-8

    Article  CAS  Google Scholar 

  • Karbassi, A. R., Tajziehchi, S., & Khoshgalb, H. (2018). Speciation of heavy metals in coastal water of Qeshm Island in the Persian Gulf. Global Journal of Environmental Science and Management, 4(1), 91–98

    CAS  Google Scholar 

  • Khaled, A., El Nemr, A., & El Sikaily, A. (2006). An assessment of heavy-metal contamination in surface sediments of the Suez Gulf using geoaccumulation indexes and statistical analysis. Chemistry and Ecology, 22(3), 239–252. https://doi.org/10.1080/02757540600658765

    Article  CAS  Google Scholar 

  • Khayan, K., Heru Husodo, A., Astuti, I., Sudarmadji, S., & Sugandawaty Djohan, T. (2019). Rainwater as a source of drinking water: health impacts and rainwater treatment. Journal of Environmental and Public Health. https://doi.org/10.1155/2019/1760950

    Article  Google Scholar 

  • Li, H., Shi, A., Li, M., & Zhang, X. (2013). Effect of pH, temperature, dissolved oxygen, and flow rate of overlying water on heavy metals release from storm sewer sediments. Journal of Chemistry. https://doi.org/10.1155/2013/434012

    Article  Google Scholar 

  • Mahvi, A. H., & Mardani, G. (2005). Determination of phenanthrene in urban runoff of Tehran, capital of Iran. Iranian Journal of Environmental Health Science & Engineering, 2(2), 5–11

    Google Scholar 

  • Maniquiz-Redillas, M., & Kim, L. H. (2014). Fractionation of heavy metals in runoff and discharge of a stormwater management system and its implications for treatment. Journal of Environmental Sciences, 26(6), 1214–1222. https://doi.org/10.1016/S1001-0742(13)60591-4

    Article  CAS  Google Scholar 

  • Michalke, B., Willkommen, D., & Venkataramani, V. (2019). Iron redox speciation analysis using capillary electrophoresis coupled to inductively coupled plasma mass spectrometry (CE-ICP-MS). Frontiers in Chemistry. https://doi.org/10.3389/fchem.2019.00136

    Article  Google Scholar 

  • Milik, J., & Pasela, R. (2018). Analysis of concentration trends and origins of heavy metal loads in stormwater runoff in selected cities: A review. E3S Web of Conferences EDP Sciences. https://doi.org/10.1051/e3sconf/20184400111

    Article  Google Scholar 

  • Mishra, S., Kumar, A., Yadav, S., & Singhal, M. K. (2018). Assessment of heavy metal contamination in water of Kali River using principle component and cluster analysis. India. Sustainable Water Resources Management, 4(3), 573–581. https://doi.org/10.1007/s40899-017-0141-4

    Article  Google Scholar 

  • Moreda-Piñeiro, J., Alonso-Rodríguez, E., Moscoso-Pérez, C., Blanco-Heras, G., Turnes-Carou, I., López-Mahía, P., & Prada-Rodríguez, D. (2014). Influence of marine, terrestrial and anthropogenic sources on ionic and metallic composition of rainwater at a suburban site (northwest coast of Spain). Atmospheric Environment, 88, 30–38. https://doi.org/10.1016/j.atmosenv.2014.01.067

    Article  CAS  Google Scholar 

  • Muñoz, M. S., Rodríguez, C. M., Rudnikas, A. G., Rizo, O. D., Martínez-Santos, M., Ruiz-Romera, E., & Díaz, R. H. (2015). Physicochemical characterization, elemental speciation and hydrogeochemical modeling of river and peloid sediments used for therapeutic uses. Applied Clay Science, 104, 36–47. https://doi.org/10.1016/j.clay.2014.11.029

    Article  CAS  Google Scholar 

  • NamieÅ›nik, J., & Rabajczyk, A. (2010). The speciation and physico-chemical forms of metals in surface waters and sediments. Chemical Speciation & Bioavailability, 22(1), 1–24. https://doi.org/10.3184/095422910X12632119406391

    Article  CAS  Google Scholar 

  • Narukawa, T., Chiba, K., Sinaviwat, S., & Feldmann, J. (2017). A rapid monitoring method for inorganic arsenic in rice flour using reversed phase-high performance liquid chromatography-inductively coupled plasma mass spectrometry. Journal of Chromatography A, 1479, 129–136. https://doi.org/10.1016/j.chroma.2016.12.001

    Article  CAS  Google Scholar 

  • National Research Council. (1997). Toxicologic assessment of the army’s zinc cadmium sulfide dispersion tests. National Academies Press.

  • Nduka, J. K., & Orisakwe, O. E. (2010). Assessment of environmental distribution of lead in some municipalities of South-Eastern Nigeria. International Journal of Environmental Research and Public Health, 7(6), 2501–2513. https://doi.org/10.3390/ijerph7062501

    Article  CAS  Google Scholar 

  • Pathirathna, P., Siriwardhane, T., McElmurry, S. P., Morgan, S. L., & Hashemi, P. (2016). Fast voltammetry of metals at carbon-fiber microelectrodes: towards an online speciation sensor. The Analyst, 141(23), 6432–6437

    Article  CAS  Google Scholar 

  • Riba, I., Garcia-Luque, E., Blasco, J., & DelValls, T. A. (2003). Bioavailability of heavy metals bound to estuarine sediments as a function of pH and salinity values. Chemical Speciation & Bioavailability, 15(4), 101–114. https://doi.org/10.3184/095422903782775163

    Article  CAS  Google Scholar 

  • Riley, C. L., & Nezat, C. A. (2020). Controls on major ion chemistry and metals in a suburban pond fed by municipal water and treated stormwater. Applied Geochemistry. https://doi.org/10.1016/j.apgeochem.2020.104576

    Article  Google Scholar 

  • Rivera-Rivera, D. M., Escobedo-Urías, D. C., Jonathan, M. P., Sujitha, S. B., & Chidambaram, S. (2020). Evidence of natural and anthropogenic impacts on rainwater trace metal geochemistry in central Mexico: A statistical approach. Water, 12(1), 192. https://doi.org/10.3390/w12010192

    Article  CAS  Google Scholar 

  • Saatsaz, M. (2019). A historical investigation on water resources management in Iran. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-018-00307-y

    Article  Google Scholar 

  • Saeedi, M., & Pajooheshfar, S. P. (2012). Acid rain examination and chemical composition of atmospheric precipitation in Tehran, Iran. Environment Asia, 5(1), 39–47

    Google Scholar 

  • Saikrishna, K., Purushotham, D., Sunitha, V., Reddy, Y. S., Linga, D., & Kumar, B. K. (2020). Data for the evaluation of groundwater quality using water quality index and regression analysis in parts of Nalgonda district, Telangana. Southern India. Data in Brief. https://doi.org/10.1016/j.dib.2020.106235

    Article  Google Scholar 

  • Sharma, P., & Rai, V. (2018). Assessment of rainwater chemistry in the Lucknow metropolitan city. Applied Water Science, 8(2), 67. https://doi.org/10.1007/s13201-018-0705-y

    Article  CAS  Google Scholar 

  • Shirani, M., Afzali, K. N., Jahan, S., Strezov, V., & Soleimani-Sardo, M. (2020). Pollution and contamination assessment of heavy metals in the sediments of Jazmurian playa in southeast iran. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-61838-x

    Article  CAS  Google Scholar 

  • Soleimani, M., Amini, N., Sadeghian, B., Wang, D., & Fang, L. (2018). Heavy metals and their source identification in particulate matter (PM2. 5) in Isfahan City. Iran Journal of Environmental Sciences, 72, 166–175. https://doi.org/10.1016/j.jes.2018.01.002

    Article  Google Scholar 

  • Szögi, A. A., Hunt, P. G., Sadler, E. J., & Evans, D. E. (2004). Characterization of oxidation-reduction processes in constructed wetlands for swine wastewater treatment. Applied Engineering in Agriculture. https://doi.org/10.13031/2013.15891

    Article  Google Scholar 

  • Thao, N. T. N. L., & Chiang, K. Y. (2020). The migration, transformation and control of trace metals during the gasification of rice straw. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.127540

    Article  Google Scholar 

  • Tiri, A., Lahbari, N., & Boudoukha, A. (2017). Assessment of the quality of water by hierarchical cluster and variance analyses of the Koudiat Medouar Watershed, East Algeria. Applied Water Science, 7(8), 4197–4206

    Article  CAS  Google Scholar 

  • Uygur, N., Karaca, F., & Alagha, O. (2010). Prediction of sources of metal pollution in rainwater in Istanbul, Turkey using factor analysis and long-range transport models. Atmospheric Research, 95(1), 55–64. https://doi.org/10.1016/j.atmosres.2009.08.007

    Article  CAS  Google Scholar 

  • Vu, H. A., Nguyen, M. H., Vu-Thi, H. A., Do-Hong, Q., Dang, X. H., Nguyen, T. N. B., & Tu, M. B. (2019). Speciation analysis of Arsenic compounds by high-Performance liquid chromatography in combination with inductively coupled plasma dynamic reaction cell quadrupole mass spectrometry: application for vietnamese rice samples. Journal of Analytical Methods in Chemistry. https://doi.org/10.1155/2019/5924942

    Article  Google Scholar 

  • Waziri, M., Akinniyi, J. A., & Ogbodo, O. U. (2012). Assessment of the physicochemical characteristics of rain and runoff water in University of Maiduguri-Nigeria staff quarters. American Journal of Scientific and Industrial Researches. https://doi.org/10.5251/AJSIR.2012.3.2.99.102

    Article  Google Scholar 

  • Wei, J., Duan, M., Li, Y., Nwankwegu, A. S., Ji, Y., & Zhang, J. (2019). Concentration and pollution assessment of heavy metals within surface sediments of the Raohe Basin. China Scientific Reports, 9(1), 1–7. https://doi.org/10.1038/s41598-019-49724-7

    Article  CAS  Google Scholar 

  • Xing, J., Song, J., Yuan, H., Wang, Q., Li, X., Li, N., & Qu, B. (2017). Atmospheric wet deposition of dissolved trace elements to Jiaozhou Bay, North China: Fluxes, sources and potential effects on aquatic environments. Chemosphere, 174, 428–436. https://doi.org/10.1016/j.chemosphere.2017.02.004

    Article  CAS  Google Scholar 

  • Yahya, F. N., Suli, L. N. M., Ibrahim, W. H. W., & Rasid, R. A. (2019). Thermodynamic evaluation of the aqueous stability of rare earth elements in sulfuric acid leaching of monazite through Pourbaix diagram. Materials Today: Proceedings, 19, 1647–1656. https://doi.org/10.1016/j.matpr.2019.11.193

    Article  CAS  Google Scholar 

  • Yang, J. Q., Chai, L. Y., Li, Q. Z., & Shu, Y. D. (2017). Redox behavior and chemical species of arsenic in acidic aqueous system. Transactions of Nonferrous Metals Society of China, 27(9), 2063–2072. https://doi.org/10.1016/S1003-6326(17)60233-4

    Article  CAS  Google Scholar 

  • Yao, L., Min, X., Ke, Y., Wang, Y., Liang, Y., Yan, X., & Yang, K. (2019). Release behaviors of arsenic and heavy metals from arsenic sulfide sludge during simulated storage. Minerals, 9(2), 130. https://doi.org/10.3390/min9020130

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhang, H., Zhang, Z., Liu, C., Sun, C., Zhang, W., & Marhaba, T. (2018). pH Effect on heavy metal release from a polluted sediment. Journal of Chemistry. https://doi.org/10.1155/2018/7597640

    Article  Google Scholar 

  • Zhu, Z. Z., Li, J., & Wang, Z. R. (2015). Concentrations and speciation of dissolved heavy metal in rainwater in Guiyang China. Huan Jing Ke= Xue Huanjing Kexue, 36(6), 1952–1958

    Google Scholar 

Download references

Acknowledgements

We are grateful to the University of Tehran for providing the facilities for conducting this study. We also appreciate the Syrian Ministry of Higher Education for its assistance.

Funding

The present research is supported by Syrian Ministry of Education (Fund No. 46/B/4/103626).

Author information

Authors and Affiliations

Authors

Contributions

GE conducted the literature review, planned the experimental design, and analyzed and interpreted the information, in addition to writing the manuscript. ARK and NM supervised and helped in the literature review and the manuscript preparation.

Corresponding author

Correspondence to Abdolreza Karbassi.

Ethics declarations

Conflict of interest

The authors declare that there is not any conflict of interest regarding the publication of this manuscript. In addition, the ethical issues, including plagiarism, informed consent, misconduct, data fabrication and/ or falsification, double publication and/or submission, and redundancy has been completely observed by the authors.

Ethical approval

All authors agree to participate.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebraheim, G., Karbassi, A. & Mehrdadi, N. The thermodynamic stability, potential toxicity, and speciation of metals and metalloids in Tehran runoff, Iran. Environ Geochem Health 43, 4719–4740 (2021). https://doi.org/10.1007/s10653-021-00966-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00966-3

Keywords

Navigation