Skip to main content
Log in

Strontium accumulation by the terrestrial and aquatic plants affected by mining and municipal wastewaters (Elazig, Turkey)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The mining and municipal wastewaters in the study area are located around Elazig, Turkey. This study investigated the translocation and accumulation of Sr into 9 terrestrial–aquatic plants from the Elazig municipal wastewater, Keban Pb–Zn and Maden Cu wastewaters. Plants and their soil samples were collected from the stream/rivers on the municipal and mining areas, and Sr values in both plant parts and their soils were analyzed by ICP-MS. The mean Sr concentrations in the soil, root and shoot of the terrestrial–aquatic plants were 101, 48.2 and 80.5 ppm, respectively (on the dried weight basis). The enrichment coefficients of root (ECR) and shoots (ECS) and translocation factors of studied plants were calculated and, then, divided into several groups as a candidate, bioaccumulator and hyperaccumulator plants according to their ECR and ECSs. These groups indicated the candidate plants: Salix sp. and Tamarix tetrandra; bioaccumulator plants: Pragmites sp. and Xanthium, and hyperaccumulator plants: Typha latifolia, Bolboscholnus ascbersus and Lythnium salicaria for Sr. These results showed that both bioaccumulator and hyperaccumulator plant groups had very high ability to accumulate strontium to plant parts from their soil. Therefore, these studied plants may be helpful/useful for the rehabilitation studies of municipal and mining soils contaminated by Sr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akgul, B. (2015). Geochemical associations between fluorite mineralization and A-type shoshonitic magmatism in the Keban-Elazig Area, East Anatolia, Turkey. Journal of African Earth Sciences, 111, 222–230.

    CAS  Google Scholar 

  • APHA. (1999). Standard methods for the examination of water and wastewater. Washington: American Public Health Association.

    Google Scholar 

  • ATSDR. (2004). Toxicological profile for Strontium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

  • Benabdallah, N., Harrache, D., Mir, A., De La Guardia, M., & Benhachem, F. (2017). Bioaccumulation of trace metals by red alga Corallina elongata in the coast of Beni Saf, west coast, Algeria. Chemistry International, 3, 220–231.

    CAS  Google Scholar 

  • Burger, A., & Lichtscheidl, I. (2019). Strontium in the environment: Review about reactions of plants towards stable and radioactive strontium isotopes. Science of the Total Environment, 653, 1458–1512.

    CAS  Google Scholar 

  • Capo, R., Stewart, B., & Chadwick, O. (1998). Strontium isotopes as tracers of ecosystem processes: Theory and methods. Geoderma, 82, 197–225.

    CAS  Google Scholar 

  • Censi, P., Saiano, F., Pisciotta, A., & Tuzzolino, N. (2014). Geochemical behaviour of rare earth in Vitis vinifera grafted onto different rootstocks and growing on several soils. Science of the Total Environmental, 473–474, 597–608.

    Google Scholar 

  • Chen, S. B., Zhu, Y. G., & Hu, Q. H. (2005). Soil to plant transfer of 238U, 226Ra and 232Th on U mining-impacted soil from southeastern China. Journal of Environmental Radioactivity, 82, 223–236.

    CAS  Google Scholar 

  • Dvoršćak, M., Stipičević, S., Mendaš, G., Drevenkar, V., Medunić, G., Stančić, Z., et al. (2019). Soil burden by persistent organochlorine compounds in the vicinity of a coal-fired power plant in Croatia: A comparison study with an urban-industrialized area. Environmental Science and Pollution Research, 26, 23707–23716.

    Google Scholar 

  • Ebrahimi, P., & Barbieri, M. (2019). Gadolinium as an emerging micro contaminant in water resources: Threats and opportunities. Geosciences, 9(2), 93.

    CAS  Google Scholar 

  • Fait, S., Fakhi, S., ElMzibri, M., Faiz, Z., Fougrach, H., Badri, W., et al. (2017). Distribution of metallic trace elements (ETM) in surface soils around the Mediouna discharge (southern of Casablanca). Chemistry International, 3, 378–385.

    Google Scholar 

  • Fellows, R. J., Fruchter, J. S., & Driver, C. J. (2009). 100-N Area Strontium-90 treatability Demonstration project: food chain transfer for phytoremediation along the 100-N Columbia River Riparian Zone. Washinghton: US Department of Energy, Pacific NW National Lab.

    Google Scholar 

  • Fiket, Ž., Medunić, G., & Kniewald, G. (2016). Rare earth element distribution in soil nearby thermal power plant. Environmental Earth Sciences, 75(7), 5981–5989.

    Google Scholar 

  • Fiket, Ž., Vidaković-, Medunić G., Cifrek, Ž., Jezidžić, P., & Cvjetko, P. (2019). Effect of coal mining activities and related industry on composition, cytotoxicity and genotoxicity of surrounding soils. Environmental Science and Pollution Research, 27, 6613–6627.

    Google Scholar 

  • Gjengedal, E., Martinsen, T., & Steinnes, E. (2015). Background levels of some major, trace, and rare earth elements in indigenous plant species growing in Norway and the influence of soil acidification, soil parent material, and seasonal variation on these levels. Environmental Monitoring and Assessment, 187, 386–414.

    Google Scholar 

  • Griffits, W. R., Albers, J. P., & Oner, O. (1972). Massive sulfide copper deposits of the Ergani-Maden Area Southeastern Turkey. Economic Geology, 67, 701–716.

    Google Scholar 

  • Gupta, D., Deb, U., Walther, C., & Chatterjee, S. (2018a). Strontium in the ecosystem: Transfer in plants via root system. In D. Gupta & C. Walther (Eds.), Behaviour of strontium in plants and the environment (pp. 1–18). Cham: Springer.

    Google Scholar 

  • Gupta, D., Schulz, W., Steinhauser, G., & Walther, C. (2018b). Radiostrontium transport in plants and phytoremediation. Environmental Science and Pollution Research, 25, 29996–30008.

    CAS  Google Scholar 

  • Gupta, D. K., & Voronina, A. (2018). Remediation measures for radioactively contaminated areas. New York: Springer.

    Google Scholar 

  • Iqbal, M. (2016). Vicia faba bioassay for environmental toxicity monitoring: A review. Chemosphere, 144, 785–802.

    CAS  Google Scholar 

  • Iqbal, M., Abbas, M., Nazir, A., & Qamar, A. Z. (2019). Bioassays based on higher plants as excellent dosimeters for ecotoxicity monitoring: A review. Chemistry International, 5, 1–80.

    CAS  Google Scholar 

  • Iqbal, M., Iqbal, N., Bhatti, I. A., Ahmad, N., & Zahid, M. (2016). Response surface methodology application in optimization of cadmium adsorption by shoe waste: A good option of waste mitigation by waste. Ecological Engineering, 88, 265–275.

    Google Scholar 

  • Iqbal, M., Nisar, J., Adil, M., Abbas, M., Riaz, M., Tahir, M. A., et al. (2017). Mutagenicity and cytotoxicity evaluation of photo-catalytically treated petroleum refinery wastewater using an array of bioassays. Chemosphere, 168, 590–598.

    CAS  Google Scholar 

  • Ivanić, M., Fiket, Ž., Medunić, G., Furdek Turk, M., Marović, G., Senčar, J., et al. (2019). Multi-element composition of soil, mosses and mushrooms and assessment of natural and artificial radioactivity of a pristine temperate rainforest system (Slavonia, Croatia). Chemosphere, 215, 668–677.

    Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants. Boca Raton: CRC Press.

    Google Scholar 

  • Khan, K., Khan, H., Lu, Y., Ihsanullah, I., Nawab, J., Khan, S., et al. (2014). Evaluation of toxicological risk of foodstuffs contaminated with heavy metals in Swat, Pakistan. Ecotoxicology and Environmental Safety, 108, 224–232.

    CAS  Google Scholar 

  • Liu, X. H., Gao, Y. T., Sardar, K., Duan, G., Chen, A. K., Ling, L., et al. (2008). Accumulation of Pb, Cu, and Zn in terrestrial plants growing on contaminated sites and their potential accumulation capacity in Heqing, Yunnan. Journal of Environmental Sciences, 20, 1469–1474.

    CAS  Google Scholar 

  • Majolagbe, A. O., Adeyi, A. A., & Osibanjo, O. (2016). Vulnerability assessment of groundwater pollution in the vicinity of an active dumpsite (Olusosun), Lagos, Nigeria. Chemistry International, 2, 232–241.

    CAS  Google Scholar 

  • Mani, D., Kumar, C., & Patel, N. K. (2016). Integrated micro-biochemical approach for phytoremediation of cadmium and lead contaminated soils using Gladiolus grandiflorus L cut flower. Ecotoxicology and Environmental Safety, 124, 435–446.

    CAS  Google Scholar 

  • Medunić, G., Grigore, M., Dai, S., Berti, D., Hochella, M. F., Mastalerz, M., et al. (2020). Characterization of superhigh-organic-sulfur Raša coal, Istria, Croatia, and its environmental implication. International Journal of Coal Geology, 217, 103344.

    Google Scholar 

  • Myrvang, M., Hillersøy, M., Heim, M., Bleken, M., & Gjengedal, E. (2016). Uptake of macro nutrients, barium, and strontium by vegetation from mineral soils on carbonatite and pyroxenite bedrock at the Lillebukt Alkaline Complex on Stjernøy, Northern Norway. Journal of Plant Nutrition and Soil Science, 179, 705–716.

    CAS  Google Scholar 

  • Nematollahi, M. J., Ebrahimi, P., & Ebrahimi, M. (2014). Comparison of environmental geochemistry of heavy metals in coastal and marine sediments of Chabahar and Gowatr Bays, SE Iran. Geochemistry Journal, 1(3), 1–6.

    Google Scholar 

  • Nematollahi, M. J., Ebrahimi, P., & Ebrahimi, M. (2016a). Evaluating hydrogeochemical processes regulating groundwater quality in an unconfined aquifer. Environmental Processes, 3(4), 1021–1043.

    Google Scholar 

  • Nematollahi, M. J., Ebrahimi, P., Razmara, M., & Ghasemi, A. (2016b). Hydrogeochemical investigations and groundwater quality assessment of Torbat-Zaveh plain, Khorasan Razavi, Iran. Environmental Monitoring and Assessment, 188(1), 1–21.

    CAS  Google Scholar 

  • Obek, E., Yakupogullari, Y., Tepe, O., & Toraman, Z. (2007). Elazig Belediyesi atiksu aritma tesisi giris ve cikis sularinin helmintolojik riskinin arastirilmasi. Uludah Universitesi Dergisi, 12(1), 77–83.

    Google Scholar 

  • Padmasubashini, V., Sunilkumar, B., Krishnakumar, M., & Singh, S. B. (2020). Method validation and uncertainty for the determination of rare earth elements, yttrium, thorium and phosphorus in monazite samples by ICP-OES. Chemistry International, 6, 98–109.

    CAS  Google Scholar 

  • Pais, I., & Jones, J. B. (2000). The handbook of trace elements (pp. 222). Florida: St. Lucie Press.

    Google Scholar 

  • Palutoglu, M., Akgul, B., Suyarko, V., Yakovenko, M., Kryuchenko, N., & Sasmaz, A. (2018). Phytoremediation of cadmium by native plants grown on mining soil. Bulletin of Environmental Contamination and Toxicology, 100, 293–297.

    CAS  Google Scholar 

  • Palutoglu, M., & Sasmaz, A. (2017). 29 November 1795 Kahramanmaras Earthquake, Southern Turkey. Bulletin of the Mineral Research and Exploration, 155, 81–90.

    Google Scholar 

  • Pervaiz, M., Butt, K. M., Raza, M. A., Rasheed, A., Ahmad, S., Adnan, A., et al. (2015). Extraction and applications of aluminum hydroxide from bauxite for commercial consumption. Chemistry International, 1, 99–102.

    CAS  Google Scholar 

  • Petrescu, L., & Bilal, E. (2006). Natural actinides studies in conifers grown on uranium mining dumps (the East Carpathians, Romania). Carpathian Journal of Earth and Environmental Sciences, 1, 63–80.

    Google Scholar 

  • Qi, L., Qin, X. L., Li, F. M., Siddique, K., Brandl, H., Xu, J. Z., et al. (2015). Uptake and distribution of stable strontium in 26 cultivars of three crop species: Oats, wheat, and barley for their potential use in phytoremediation. International Journal of Phytoremediation, 17, 264–271.

    CAS  Google Scholar 

  • Rađenović, A., & Medunić, G. (2015). Removal of Cr(VI) from aqueous solution by a commercial carbon black. Desalination and Water Treatment, 55(1), 183–192.

    Google Scholar 

  • Rađenović, A., Medunić, G., & Sofilić, T. (2016). The use of ladle furnace slag for the removal of hexavalent chromium from an aqueous solution. Metallurgical Research and Technology, 113, 6.

    Google Scholar 

  • Radić, S., Medunić, G., Kuharić, Ž., Roje, V., Maldini, K., Vujčić, V., et al. (2018). The effect of hazardous pollutants from coal combustion activity: Phytotoxicity assessment of aqueous soil extracts. Chemosphere, 199(1), 191–200.

    Google Scholar 

  • Sasmaz, M., Akgul, B., Yildirim, D., & Sasmaz, A. (2016a). Bioaccumulation of thallium by the wild plants grown in soils of mining area. International Journal of Phytoremediation, 18(11), 1164–1170.

    CAS  Google Scholar 

  • Sasmaz, M., Akgül, B., Yıldırım, D., & Sasmaz, A. (2016b). Mercury uptake and phytotoxicity in terrestrial plants grown naturally in the Gumuskoy (Kutahya) mining area, Turkey. International Journal of Phytoremediation, 18(1), 69–76.

    Google Scholar 

  • Sasmaz, A., Dogan, I. M., & Sasmaz, M. (2016c). Removal of Cr, Ni and Co in the water of chromium mining areas by using Lemna gibba L. and Lemna minor L. Water and Environmental Journal, 30(3–4), 235–242.

    CAS  Google Scholar 

  • Sasmaz, A., Obek, E., & Hasar, H. (2008). The accumulation of heavy metals in Typha latifolia L. grown in stream carrying secondary effluent. Ecological Engineering, 33, 278–284.

    Google Scholar 

  • Sasmaz, M., Obek, E., & Sasmaz, A. (2018). The accumulation of La, Ce and Y by Lemnaminor and Lemna gibba in the Keban gallery water, Elazig Turkey. Water and Environment Journal, 32(1), 75–83.

    CAS  Google Scholar 

  • Sasmaz, M., Obek, E., & Sasmaz, A. (2019). Bioaccumulation of cadmium and thallium in Pb-Zn tailing waste water by Lemna minorand Lemna gibba. Applied Geochemistry, 100, 287–292.

    CAS  Google Scholar 

  • Sasmaz, M., Öbek, E., & Sasmaz, A. (2016d). Bioaccumulation of uranium and thorium by Lemna minor and Lemna gibba in Pb-Zn-Ag tailing water. Bulletin of Environmental Contamination and Toxicology, 97(6), 832–837.

    CAS  Google Scholar 

  • Sasmaz, A., & Sasmaz, M. (2009). The phytoremediation potential for strontium of indigenous plants growing in a mining area. Environmental and Experimental Botany, 67(1), 139–144.

    CAS  Google Scholar 

  • Sasmaz, M., & Sasmaz, A. (2017). The accumulation of strontium by native plants grown on Gumuskoy mining soils. Journal of Geochemical Exploration, 181, 236–242.

    CAS  Google Scholar 

  • Sasmaz, M., Topal, E. I. A., Obek, E., & Sasmaz, A. (2015). The potential of Lemna gibba L. and Lemna minor L. to remove Cu, Pb, Zn, and As in gallery water in a mining area in Keban, Turkey. Journal of Environmental Management, 163, 246–253.

    CAS  Google Scholar 

  • Seeliger, T. C., Pernicka, E., Wagner, G. A., Begemann, F., Schmitt-Strecker, S., Eibner, C., et al. (1985). Arch€aometallurgische Untersuchungen in Nord- und Ostanatolien. Jahrbuch Romisch-German Zentralmuseum, 32, 597–659.

    Google Scholar 

  • Shacklette, H. T., Erdman, J. A., & Harms, T. F. (1978). Trace elements in plant foodstuffs in toxicity of heavy metals in the environments: Part I. New York (p. 25).

  • Shahraki, S. A., Ahmadimoghadam, A., Naseri, F., & Esmailzade, E. (2008). Study the accumulation of strontium in plant growing around Sarcheshmeh Copper Mine, Iran (pp. 239–242). Ostrava: VSB Technical University of Ostrava.

    Google Scholar 

  • Siddique, A., Hassan, A., Khan, S. R., Inayat, A., Nazir, A., & Iqbal, M. (2018). Appraisal of heavy metals and nutrients from phosphate rocks, Khyber Pakhtunkhwa, Pakistan. Chemistry International, 4, 1–6.

    CAS  Google Scholar 

  • Thakur, R., Tarafder, P. K., & Jha, R. R. (2015). Micelle-mediated extraction of cobalt and its spectrophotometric determination in rocks, soils, sediments and sea-bed polymetallic nodules. Chemistry International, 5, 109–116.

    Google Scholar 

  • Topal, M. (2016). Elazig Belediyesi Atiksu Tesisi Cikis sularının verildiği Kehli Deresinin sulama suyu olarak kullanılabilirliğinin değerlendirilmesi. Igdir Universitesi Fen Bil. Dergisi, 6(2), 139–149.

    Google Scholar 

  • Topal, M., & Arslan Topal, E. I. (2011). Evaluation of the Elazığ municipal wastewater treatment plant with some parameters in 2010–2011 winter season. Cumhuriyet Science Journal, 32, 1–12.

    Google Scholar 

  • US EPA. (2000). Introduction to phytoremediation. National Risk Management Research Laboratory, Office of Research and Development, EPA/600/R-99/107.

  • Van Hoeck, A., Horemans, N., Van Hees, M., Nauts, R., Knapen, D., Vandenhove, H., et al. (2015). β-Radiation stress responses on growth and antioxidative defense system in plants: A study with strontium-90 in Lemna minor. International Journal of Molecular Sciences, 16, 15309–15327.

    Google Scholar 

  • Von Fircks, Y., Rosen, K., & Sennerby-Forsse, L. (2002). Uptake and distribution of 137Cs and 90Sr in Salix viminalis plants. Journal of Environmental Radioactivity, 63, 1–14.

    Google Scholar 

  • Wang, H., Chen, C., & Wang, J. (2017). Phytoremediation of strontium contaminated soil by Sorghum bicolor (L) Moench and soil microbial community-level physiological profiles (CLPPs). Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-8432-8.

    Article  Google Scholar 

  • Wei, C. Y., Chen, T. B., & Huang, Z. C. (2002). Cretan bake (Pteris cretica L.): An arsenic-accumulating plant. Acta Ecologica Sinica, 22, 777–782.

    Google Scholar 

  • WHO. (2006). Guidelines for drinking-water quality. Geneva: World Health Organization.

    Google Scholar 

  • Wong, M. H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50, 775–780.

    CAS  Google Scholar 

  • Yildirim, D., & Sasmaz, A. (2017). Phytoremediation of As, Ag, and Pb in contaminated soils using terrestrial plants grown on Gumuskoy mining area (Kütahya Turkey). Journal of Geochemical Exploration, 182, 228–234.

    CAS  Google Scholar 

  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in terrestrial plants growing on a contaminated Florida site. Science of the Total Environment, 368, 456–464.

    CAS  Google Scholar 

  • Zhao, F. J., Lombi, E., & Mc Grath, S. P. (2003). Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 249, 37–43.

    CAS  Google Scholar 

  • Zu, Y. Q., Li, Y., Chen, J. J., Chen, H. Y., Qin, L., & Schvartz, C. (2005). Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environment International, 31, 755–762.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merve Sasmaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasmaz, M., Uslu Senel, G. & Obek, E. Strontium accumulation by the terrestrial and aquatic plants affected by mining and municipal wastewaters (Elazig, Turkey). Environ Geochem Health 43, 2257–2270 (2021). https://doi.org/10.1007/s10653-020-00629-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00629-9

Keywords

Navigation