Skip to main content
Log in

Nickel and copper accumulation strategies in Odontarrhena obovata growing on copper smelter-influenced and non-influenced serpentine soils: a comparative field study

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The present investigation is the first in situ comparative study for the identification of Ni and Cu accumulation strategies involved in Odontarrhena obovata (syn. Alyssum obovatum (C.A. Mey.) Turcz.) growing in Cu-rich smelter-influenced (CSI) and non-Cu-influenced (NCI) sites. The total and Na2EDTA (disodium ethylenediaminetetraacetic acid)-extractable metal concentration in soils and plant tissues (roots, stem, leaves and flowers) were determined for CSI and NCI sites. High concentrations of total Ni, Cr, Co and Mg in the soil suggest serpentine nature of both the sites. In spite of high total and extractable Cu concentrations in CSI soil, majority of its accumulation was restricted to O. obovata roots showing its excluder response. Since the translocation and bioconcentration factors of Ni > 1 and the foliar Ni concentration > 1000 μg g−1, it can be assumed that O. obovata has Ni hyperaccumulation potential for both the sites. No significant differences in chlorophyll content in O. obovata leaves were observed between studied sites, suggesting higher tolerance of this species under prolonged heavy metal stress. Furthermore, this species from CSI site demonstrated rather high viability under extreme technogenic conditions due to active formation of antioxidants such as ascorbate, free proline and protein thiols. The presence of Cu in higher concentration in serpentine soil does not exert detrimental effect on O. obovata and its Ni hyperaccumulation ability. Thus, O. obovata could act as a putative plant species for the remediation of Cu-rich/influenced serpentine soils without compromising its Ni content and vitality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BCF:

Bioconcentration factor

Chl:

Chlorophyll

CSI:

Cu-rich smelter-influenced

DTNB:

5,5-Ditiobis(2-nitrobenzoic acid)

DW:

Dry weight

EC:

Electrical conductivity

ICP-AES:

Inductively coupled plasma atomic emission spectrometer

MDA:

Malondialdehyde

NCI:

Non-Cu-influenced

Na2EDTA:

Disodium ethylenediaminetetraacetic acid

NPT:

Non-protein thiols

SP:

Soluble protein

SPT:

Soluble protein thiols

TBA:

Thiobarbituric acid

TF:

Translocation factor

References

  • Alloway, B. J. (1990). Heavy metals in soils. New York: Wiley.

    Google Scholar 

  • Alloway, B. J. (2013). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability. Environmental pollution (Vol. 22). Dordrecht: Springer.

    Google Scholar 

  • Baker, D. E., & Senef, J. P. (1995). Copper. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 179–205). London: Blackie Academic and Professional.

    Google Scholar 

  • Bani, A., Echevarria, G., Sulce, S., Morel, J. L., & Mullai, A. (2007). In situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site Albania. Plant and Soil, 293, 79–89.

    CAS  Google Scholar 

  • Bhattacharjee, S. (2005). Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal. Current Science, 89, 1113–1121.

    CAS  Google Scholar 

  • Borisova, G., Chukina, N., Maleva, M., Kumar, A., & Prasad, M. N. V. (2016). Thiols as biomarkers of heavy metal tolerance in the aquatic macrophytes of Middle Urals, Russia. International Journal of Phytoremediation, 18(10), 1037–1045.

    CAS  Google Scholar 

  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annals of Biochemistry, 72, 248–254.

    CAS  Google Scholar 

  • Broadhurst, C. L., Chaney, R. L., Angle, J. A., Maugel, T. K., Erbe, E. F., & Murphy, C. A. (2004). Simultaneous hyperaccumulation of nickel, manganese and calcium in Alyssum leaf trichomes. Environmental Science and Technology, 38, 5797–5802.

    CAS  Google Scholar 

  • Broadhurst, C. L., Tappero, R. V., Maugel, T. K., Erbe, E. F., Sparks, D. L., & Chaney, R. L. (2009). Interaction of nickel and manganese in accumulation and localization in leaves of the Ni hyperaccumulators Alyssum murale and Alyssum corsicum. Plant and Soil, 314, 35–48.

    Google Scholar 

  • Chen, Z., Ai, Y., Fang, C., Wang, K., Li, W., Liu, S., et al. (2014). Distribution and phytoavailability of heavy metal chemical fractions in artificial soil on rock cut slopes alongside railways. Journal of Hazardous Materials, 273, 165–173.

    CAS  Google Scholar 

  • Chipeng, K. F., Hermans, C., Colinet, G., Faucon, M. P., Luhembwe, N. M., Meerts, P., et al. (2010). Copper tolerance in the cuprophyte Haumania strumkatangense (S. Moore) P.A. Duvign. and Plancke. Plant and Soil, 328, 235–244.

    CAS  Google Scholar 

  • Demidchik, V. V., Sokolik, A. I., & Yurin, V. M. (2001). Copper surplus toxicity and plant tolerance. Journal Uspekhi Sovremennoi Biologii, 121, 511–525.

    CAS  Google Scholar 

  • Drozdova, I., Alekseeva-Popova, N., Kataeva, M., Bech, J., & Roca, N. (2019). A study of trace elements in plants of the Polar Urals and Chukotka in the search for metallophyte hyperaccumulators. Geochemistry: Exploration, Environment, Analysis, 19(2), 138–145.

    CAS  Google Scholar 

  • Fazlieva, E. R., Kiseleva, I. S., & Zhuikova, T. V. (2012). Antioxidant activity in the leaves of Melilotus albus and Trifolium medium from man-made disturbed habitats in the Middle Urals under the influence of copper. Russian Journal of Plant Physiology, 59(3), 369–375.

    Google Scholar 

  • Fiske, C. H., & Subbarow, Y. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry, 66, 375–400.

    CAS  Google Scholar 

  • Gall, J. E., & Rajakaruna, N. (2013). The physiology, functional genomics, and applied ecology of heavy metal-tolerant Brassicaceae. In M. Lang (Ed.), Brassicaceae: Characterization, functional genomics and health benefits (pp. 121–148). New York: Nova Science Publishers Inc.

    Google Scholar 

  • Galuszka, A., Migaszewski, Z. M., Dołęgowska, S., Michalik, A., & Duczmal-Czernikiewicz, A. (2015). Geochemical background of potentially toxic trace elements in soils of the historic copper mining area: A case study from Miedzianka Mt., Holy Cross Mountains, south-central Poland. Environmental Earth Science, 74(6), 4589–4605.

    CAS  Google Scholar 

  • Ghasemi, R., Ghaderian, S. M., & Ebrazeh, S. (2015). Nickel stimulates copper uptake by nickel-hyperaccumulator plants in the genus alyssum. Australian Journal of Botany, 63, 56–64.

    CAS  Google Scholar 

  • Gustafson, F. G. (1956). Absorption of 60Co by leaves of young plants and its translocation through the plant. American Journal of Botany, 43, 157–160.

    CAS  Google Scholar 

  • Hajar, A. S. M. (1987). Comparative ecology of Minuartia verna (L.) Hiern. and Thlaspi alpestre L. in the Southern Pennines, with special reference to heavy-metal tolerance. Ph.D. Thesis, University of Sheffield, UK.

  • Hochstetter, F. (1860). Dun Mountain Copper Mining Company. Nelson Examiner and New Zealand Chronicle, XIX (34)4.

  • Homer, F. A., Morrison, R. S., Brooks, R. R., Clemens, J., & Reeves, R. D. (1991). Comparative studies of nickel, cobalt, and copper uptake by some nickel hyperaccumulators of the genus Alyssum. Plant and Soil, 138(2), 195–205.

    CAS  Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Heidelberg: Springer.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants. Florida: CRC Press.

    Google Scholar 

  • Kramer, U. (2010). Metal hyperaccumulation in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 61, 517–534.

    Google Scholar 

  • Kumar, A., & Maiti, S. K. (2015). Assessment of potentially toxic heavy metal contamination in agricultural fields, sediment, and water from an abandoned chromite-asbestos mine waste of Roro hill, Chaibasa, India. Environmental Earth Science, 74(3), 2617–2633.

    CAS  Google Scholar 

  • Kumar, A., Maiti, S. K., Prasad, M. N. V., & Singh, R. S. (2017). Grasses and legumes facilitate phytoremediation of metalliferous soils in the vicinity of an abandoned chromite–asbestos mine. Journal of Soils and Sediments, 17(5), 1358–1368.

    CAS  Google Scholar 

  • Kumar, A., Tripti, Maleva, M., Kiseleva, I., Maiti, S. K., & Morozova, M. (2019). Toxic metal (loid) s contamination and potential human health risk assessment in the vicinity of century-old copper smelter, Karabash, Russia. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00414-3.

    Article  Google Scholar 

  • Lange, B., Pourret, O., Meerts, P., Jitaru, P., Cances, B., Grison, C., et al. (2016). Copper and cobalt mobility in soil and accumulation in a metallophyte as influenced by experimental manipulation of soil chemical factors. Chemosphere, 146, 75–84.

    CAS  Google Scholar 

  • Lee, J. (1977). Phytochemical and biogeochemical studies on nickel accumulation by some New Caledonian plants. Ph.D. Thesis, Massey University, Palmerston North, NZ.

  • Li, Y. M., Chaney, R., Brewer, E., Roseberg, R., Angle, J. S., Baker, A., et al. (2003). Development of a technology for commercial phytoextraction of nickel: Economic and technical considerations. Plant and Soil, 249(1), 107–115.

    CAS  Google Scholar 

  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic membranes. Methods in Enzymology, 148, 350–382.

    CAS  Google Scholar 

  • Malaisse, F., Grégoire, J., Brooks, R. R., Morrison, R. S., & Reeves, R. D. (1978). Aeolanthus biformifolius: A hyperaccumulator of copper from Zaire. Science, 199, 887–888.

    CAS  Google Scholar 

  • Maleva, M., Borisova, G., Chukina, N., Kumar, A., & Prasad, M. N. V. (2016). High dose of urea enchances the nickel and copper toxicity in Brazilian elodea (Egeria densa Planch. Casp.). Brazillian Journal of Botany, 39(3), 965–972.

    Google Scholar 

  • Maleva, M., Garmash, E., Chukina, N., Malec, P., Waloszek, A., & Strzałka, K. (2018). Effect of the exogenous anthocyanin extract on key metabolic pathways and antioxidant status of Brazilian elodea (Egeria densa (Planch.) Casp.) exposed to cadmium and manganese. Ecotoxicology and Environmental Safety, 160, 197–206.

    CAS  Google Scholar 

  • Maleva, M. G., Nekrasova, G. F., Borisova, G. G., Chukina, N. V., & Ushakova, O. S. (2012). Effect of heavy metals on photosynthetic apparatus and antioxidant status of Elodea. Russian Journal of Plant Physiology, 59, 190–197.

    CAS  Google Scholar 

  • Marescotti, P., Carbone, C., De Capitani, L., Grieco, G., Lucchetti, G., & Servida, D. (2008). Mineralogical and geochemical characterisation of open-air tailing and waste-rock dumps from the Libiola Fe-Cu sulphide mine (Eastern Liguria, Italy). Environmental Geology, 53(8), 1613–1626.

    CAS  Google Scholar 

  • Marescotti, P., Comodi, P., Crispini, L., Gigli, L., Zucchini, A., & Fornasaro, S. (2019). Potentially toxic elements in ultramafic soils: A study from metamorphic ophiolites of the Voltri Massif (Western Alps, Italy). Minerals, 9(8), 502.

    CAS  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants. London: Academic Press Ltd.

    Google Scholar 

  • Marsili, S., Roccotiello, E., Carbone, C., Marescotti, P., Cornara, L., & Mariotti, M. G. (2009). Plant colonization on a contaminated serpentine site. Northeastern Naturalist, 16(sp5), 297–308.

    Google Scholar 

  • Meharg, A. A. (2005). Mechanisms of plant resistance to metal and metalloid ions and potential biotechnological applications. Plant and Soil, 274, 163–174.

    CAS  Google Scholar 

  • Morais, I., Campos, J. S., Favas, P. J. C., Pratas, J., Pita, F., & Prasad, M. N. V. (2015). Nickel accumulation by Alyssum serpyllifolium subsp. lusitanicum (Brassicaceae) from serpentine soils of Bragança and Morais (Portugal) ultramafic massifs: plant–soil relationships and prospects for phytomining. Austrailan Journal of Botany, 63(2), 17–30.

    CAS  Google Scholar 

  • Mukhopadhyay, S., Rana, V., Kumar, A., & Maiti, S. K. (2017). Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India. Environmental Science and Pollution Research, 24(29), 22990–23005.

    CAS  Google Scholar 

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.

    CAS  Google Scholar 

  • Polley, J. R. (1954). Colorimetric determination of nitrogen in biological materials. Analytical Chemistry, 26(9), 1523–1524.

    CAS  Google Scholar 

  • Pourret, O., Lange, B., Bonhoure, J., Colinet, G., Decree, S., Mahy, G., et al. (2016). Assessment of soil metal distribution and environmental impact of mining in Katanga (Democratic Republic of Congo). Applied Geochemistry, 64, 43–55.

    CAS  Google Scholar 

  • Radojevic, A. A., Serbula, S. M., Kalinovic, T. S., Kalinovic, J. V., Steharnik, M. M., Petrovic, J. V., et al. (2017). Metal/metalloid content in plant parts and soils of Corylus spp. influenced by mining–metallurgical production of copper. Environmental Science and Pollution Research, 24(11), 10326–10340.

    CAS  Google Scholar 

  • Rajakaruna, N., & Bohm, B. A. (2002). Serpentine and its vegetation: A preliminary study from Sri Lanka. Journal of Applied Botany, 76, 20–28.

    Google Scholar 

  • Reeves, R. D. (2006). Hyperaccumulation of trace elements by plants. In: J. L. Morel, G. Echevarria, N. Goncharova (Eds.), Phytoremediation of metalcontaminated soils (pp. 25–52). Proceedings of the NATO Advanced Study Institute, Třešt’ Castle, Czech Republic, NATO Science Series: IV: Earth and Environmental Sciences 68. Berlin: Springer.

  • Roccotiello, E., Serrano, H. C., Mariotti, M. G., & Branquinho, C. (2015). Nickel phytoremediation potential of the Mediterranean Alyssoides utriculata (L.) Medik. Chemosphere, 119, 1372–1378.

    CAS  Google Scholar 

  • Roccotiello, E., Zotti, M., Mesiti, S., Marescotti, P., Carbone, C., Cornara, L., et al. (2010). Biodiversity in metal-polluted soils. Fresenius Environmental Bulletin, 19(10b), 2420–2425.

    CAS  Google Scholar 

  • Schat, H., & Vooijs, R. (1997). Multiple tolerance and co-tolerance to heavy metals in Silene vulgaris: a co-segregation analysis. New Phytologist, 136(3), 489–496.

    CAS  Google Scholar 

  • Schutzendubel, A., & Polle, A. (2002). Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53(372), 1351–1365.

    CAS  Google Scholar 

  • Shepherd, P. R. (1983). Biogeochemical and geobotanical studies of the ultramafic areas of North Cape, BSc (Hons.) Report, Massey University, Palmerston North, New Zealand.

  • Stowhas, T., Verdejo, J., Yáñez, C., Celis-Diez, J. L., Martínez, C. E., & Neaman, A. (2018). Zinc alleviates copper toxicity to symbiotic nitrogen fixation in agricultural soil affected by copper mining in central Chile. Chemosphere, 209, 960–963.

    CAS  Google Scholar 

  • Teptina, A. Y., & Paukov, A. G. (2015). Nickel accumulation by species of Alyssum and Noccaea (Brassicaceae) from ultramafic soils in the Urals, Russia. Australian Journal of Botany, 63(2), 78–84.

    CAS  Google Scholar 

  • Udachin, V., Williamson, B. J., Purvis, O. W., Spiro, B., Dubbin, W., Brooks, S., et al. (2003). Assessment of environmental impacts of active smelter operations and abandoned mines in Karabash, Ural Mountains of Russia. Sustainable Development, 11(3), 133–142.

    Google Scholar 

  • Udachin, V., Yershov, V. & Lansiart, M. (1998). Environmental conditions in the area of exploited massive sulphide deposits of the South Ural. Final report for TACIS Contract FINRUS 9602.

  • Van der Ent, A., Baker, A. J. M., Reeves, R. D., Pollard, A. J., & Schat, H. (2013). Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant and Soil, 362(1–2), 319–333.

    Google Scholar 

  • Van der Ent, A., & Reeves, R. D. (2015). Foliar metal accumulation in plants from copper-rich ultramafic outcrops: Case studies from Malaysia and Brazil. Plant and Soil, 389, 401–418.

    Google Scholar 

  • Von Frenckell-Insam, B. A. K., & Hutchinson, T. (1993). Nickel and zinc tolerance and co-tolerance in Deschampsia cespitosa (L.) Beauv. Subject to artificial selection. New Phytologist, 125, 547–553.

    Google Scholar 

  • Williamson, B. J., Udachin, V., Purvis, O. W., Spiro, B., Cressey, G., & Jones, G. C. (2004). Characterisation of airborne particulate pollution in the Cu smelter and former mining town of Karabash, South Ural Mountains of Russia. Environmental Monitoring and Assessment, 98(1–3), 235–259.

    CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Anzhelika Teptina for the identification of plant species and expert reviewers for proofreading the article.

Funding

The work was funded by RFBR and DST according to the research Project No. 19-516-45006. The authors also acknowledge financial support by the Ministry of Science and Higher Education of the Russian Federation (Agreement No. 02.A03.21.0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adarsh Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripti, Kumar, A., Maleva, M. et al. Nickel and copper accumulation strategies in Odontarrhena obovata growing on copper smelter-influenced and non-influenced serpentine soils: a comparative field study. Environ Geochem Health 43, 1401–1413 (2021). https://doi.org/10.1007/s10653-020-00575-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00575-6

Keywords

Navigation