Skip to main content
Log in

Occurrence, sources and ecological and human health risks of polycyclic aromatic hydrocarbons in soils from some functional areas of the Nigerian megacity, Lagos

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The study investigated the levels of the USEPA 16 PAHs in soils collected from selected functional areas (cemetery, commercial, industrial and residential areas) of the Nigerian megacity, Lagos. The soil samples were subjected to ultrasonic-assisted extraction in a 1:1 (v/v) mixture of dichloromethane/hexane, and the PAHs in the resulting extracts were determined by gas chromatography–mass spectrometry. The Σ16 PAHs in soils of these functional areas varied between 890–4675, 485–4513, 111–15,577 and 509–2047 μg kg−1 for cemetery, industrial, commercial and residential areas, respectively. The benzo(a)pyrene carcinogenic (BaPTEQ) and mutagenic equivalency (BaPMEQ) values of PAHs in these soils spanned from 523 to 1046 and 446 to 1129 µg kg−1, respectively. The hazard index values suggested that there are adverse (non-carcinogenic) health effects for a child’s exposure to PAHs in soils of commercial areas. The cancer risk values resulting from an adult’s and a child’s exposure to PAHs in these urban soils via dermal contact and oral ingestion surpassed the target value of 10−6 which suggested that there is a considerable cancer risk relating to human exposure to PAHs in these urban soils. An ecological risk assessment making use of soil quality guidelines and risk quotients suggested a low ecological risk to organisms in soils of these functional areas except for those from commercial areas. PAH isomeric ratios and principal component analysis indicated that PAHs in these soils arise from petrogenic inputs, such as occasional spills of liquid petroleum fuels and discharges from automobile workshops and generator houses, as well as pyrogenic processes including traffic emissions and combustion of fossil fuels and biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bandowe, B. A. M., Sobocka, J., & Wilcke, W. (2011). Oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) in urban soils of Bratislava, Slovakia: Patterns, relation to PAHs and vertical distribution. Environmental Pollution, 159, 539–549.

    Google Scholar 

  • Banger, K., Toor, G. S., Chirenje, T., & Ma, L. (2010). Polycyclic aromatic hydrocarbons in urban soils of different land uses in Miami, Florida. Soil and Sediment Contamination, 19, 231–243.

    CAS  Google Scholar 

  • Bao, H., Hou, S., Niu, H., Tian, K., Liu, X., & Wu, F. (2018). Status, sources, and risk assessment of polycyclic aromatic hydrocarbons in urban soils of Xi’an, China. Environmental Science and Pollution Research, 25, 18947–18959.

    CAS  Google Scholar 

  • Barreca, S., Bastone, S., Caponetti, E., Chillura Martino, D. F., & Orecchio, S. (2014). Determination of selected polyaromatic hydrocarbons by gas chromatography-mass spectrometry for the analysis of wood to establish the cause of sinking of an old vessel (Scauri wreck) by fire. Microchemical Journal, 117, 116–121.

    CAS  Google Scholar 

  • Boonyatumanond, R., Murakami, M., Wattayakorn, G., Togo, A., & Takada, H. (2007). Sources of polycyclic aromatic hydrocarbons (PAHs) in street dust in a tropical Asian mega-city, Bangkok, Thailand. Science of the Total Environment, 384, 420–432.

    CAS  Google Scholar 

  • Bortey-Sam, N., Ikenaka, Y., Nakayama, S. M. M., Akoto, O., Yohannes, Y. B., Baidoo, E., et al. (2014). Occurrence, distribution, sources and toxic potential of polycyclic aromatic hydrocarbons (PAHs) in surface soils from the Kumasi Metropolis, Ghana. Science of the Total Environment, 496, 471–478.

    CAS  Google Scholar 

  • Bucheli, T. D., Blum, F., Desaules, A., & Gustafsson, Ö. (2004). Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland. Chemosphere, 56, 1061–1076.

    CAS  Google Scholar 

  • Cachada, A., Ferreira da Silva, E., Duarte, A. C., & Pereira, R. (2016). Risk assessment of urban soils contamination: The particular case of polycyclic aromatic hydrocarbons. Science of the Total Environment, 551–552, 271–284.

    Google Scholar 

  • Cachada, A., Pato, P., Rocha-Santos, T., Ferreira da Silva, E., & Duarte, A. C. (2012). Levels, sources and potential human health risks of organic pollutants in urban soils. Science of the Total Environment, 430, 183–192.

    Google Scholar 

  • Cao, Z., Liu, J., Luan, Y., Li, Y., Ma, M., Xu, J., et al. (2010). Distribution and ecosystem risk assessment of polycyclic aromatic hydrocarbons in the Luan River, China. Ecotoxicology, 19, 827–837.

    CAS  Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment). (2010). Polycyclic aromatic hydrocarbons. Canadian soil quality guidelines for the protection of environmental and human health. Canadian Council of Ministers of the Environment, Winnipeg. Retrieved December, 2017 from, http://ceqgrcq.ccme.ca/.

  • Chahal, M. K., Toor, G. S., & Brown, P. (2010). Trace metals and polycyclic aromatic hydrocarbons in an urbanized area of Florida. Soil and Sediment Contamination, 19, 1–16.

    Google Scholar 

  • Chen, M., Huang, P., & Chen, L. (2013). Polycyclic aromatic hydrocarbons in soils from Urumqi, China: distribution, source contributions, and potential health risks. Environmental Monitoring and Assessment, 185, 5639–5651.

    CAS  Google Scholar 

  • Chen, Y., Zhang, J., Zhang, F., Li, F., & Zhou, M. (2018). Polycyclic aromatic hydrocarbons in farmland soils around main reservoirs of Jilin Province, China: Occurrence, sources and potential human health risk. Environmental Geochemistry and Health, 40, 791–802.

    CAS  Google Scholar 

  • Dai, J., Li, S., Zhang, Y., Wang, R., & Yu, Y. (2008). Distributions, sources and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in topsoil at Ji’nan city, China. Environmental Monitoring and Assessment, 147, 317–326.

    CAS  Google Scholar 

  • DeMarini, D. M., Brooks, L. R., Warren, S. H., Kobayashi, T., Gilmour, M. I., & Singh, P. (2004). Bioassay-directed fractionation and salmonella mutagenicity of automobile and forklift diesel exhaust particles. Environmental Health Perspectives, 112, 814–819.

    CAS  Google Scholar 

  • Dong, T. T. T., & Lee, B.-K. (2009). Characteristics, toxicity, and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere, 74, 1245–1253.

    CAS  Google Scholar 

  • Dudhagara, D. R., Rajpara, R. K., Bhatt, J. K., Gosai, H. B., Sachaniya, B. K., & Dave, P. B. (2016). Distribution, sources and ecological risk assessment of PAHs in historically contaminated surface sediments at Bhavnagar coast, Gujarat, India. Environmental Pollution, 213, 338–346.

    CAS  Google Scholar 

  • Dumanoglu, Y., Gaga, E. O., Gungormus, E., Sofuoglu, S. C., & Odabasi, M. (2017). Spatial and seasonal variations, sources, air-soil exchange, and carcinogenic risk assessment for PAHs and PCBs in air and soil of Kutahya, Turkey, the province of thermal power plants. Science of the Total Environment, 580, 920–935.

    CAS  Google Scholar 

  • Durant, J. L., Busby, W. F., Jr., Lafleur, A. L., Penman, B. W., & Crespi, C. L. (1996). Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutagen Research-Genetic Toxicology, 371, 123–157.

    CAS  Google Scholar 

  • Fu, S., Yang, Z. Z., Li, K., & Xu, X. B. (2010). Spatial characteristics and major sources of polycyclic aromatic hydrocarbons from soil and respirable particulate matter in a mega-city, China. Bulletin of Environmental Contamination and Toxicology, 85, 15–21.

    CAS  Google Scholar 

  • Guo, H., Lee, S. C., Ho, K. F., Wang, X. M., & Zou, S. C. (2003). Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmospheric Environment, 37, 5307–5317.

    CAS  Google Scholar 

  • Harrison, R. M., Smith, D. J. T., & Luhana, L. (1996). Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environmental Science and Technology, 30, 825–832.

    CAS  Google Scholar 

  • Haugland, T., Ottesen, R. T., & Volden, T. (2008). Lead and polycyclic aromatic hydrocarbons (PAHs) in surface soil from day care centres in the city of Bergen, Norway. Environmental Pollution, 153, 266–272.

    CAS  Google Scholar 

  • Hiller, E., Lachká, L., Jurkovič, L., & Vozár, J. (2015). Polycyclic aromatic hydrocarbons in urban soils from kindergartens and playgrounds in Bratislava, the capital city of Slovakia. Environmental Earth Sciences, 73, 7147–7156.

    CAS  Google Scholar 

  • Hu, J., Liu, C., Guo, Q., Yang, J., Okoli, C. P., Lang, Y., et al. (2017). Characteristics, source, and potential ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the Songhua River Basin, Northeast China. Environmental Science and Pollution Research, 24, 17090–17102.

    CAS  Google Scholar 

  • Hu, X., Zhang, Y., Luo, J., Wang, T., Lian, H., & Ding, Z. (2011). Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environmental Pollution, 159, 1215–1221.

    CAS  Google Scholar 

  • Iwegbue, C. M. A., Obi, G., Aganbi, E., Ogala, J. E., Omo-Irabor, O. O., & Martincigh, B. S. (2016). Concentrations and health risk assessment of polycyclic aromatic hydrocarbons in soils of an urban environment in the Niger Delta, Nigeria. Toxicology and Environmental Health Sciences, 8, 221–233.

    Google Scholar 

  • Iwegbue, C. M. A., Tesi, G. O., Overah, L. C., Emoyan, O. O., Nwajei, G. E., & Martincigh, B. S. (2017). Effects of flooding on the sources, spatiotemporal characteristics and human health risks of polycyclic aromatic hydrocarbons in floodplain soils of the lower parts of the River Niger, Nigeria. Polycyclic Aromatic Compounds. https://doi.org/10.1080/10406638.2017.1403329.

    Article  Google Scholar 

  • Jiang, Y., Hu, X., Yves, U. J., Zhan, H., & Wu, Y. (2014). Status, source and health risk assessment of polycyclic aromatic hydrocarbons in street dust of an industrial city, China. Ecotoxicology and Environmental Safety, 106, 11–18.

    CAS  Google Scholar 

  • Jiang, Y. F., Wang, X. T., Wang, F., Jia, Y., Wu, M. H., Sheng, G. Y., et al. (2009). Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in urban soil of Shanghai, China. Chemosphere, 75, 1112–1118.

    CAS  Google Scholar 

  • Jiang, Y., Yves, U. J., Sun, H., Hu, X., Zhan, H., & Wu, Y. (2016). Distribution, compositional pattern and sources of polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou, China. Ecotoxicology and Environmental Safety, 126, 154–162.

    CAS  Google Scholar 

  • Jiao, W., Lu, Y., Li, J., Han, J., Wang, T., Luo, W., et al. (2009). Identification of sources of elevated concentrations of polyaromatic hydrocarbons in an industrial area in Tianjin, China. Environmental Monitoring and Assessment, 158, 581–592.

    CAS  Google Scholar 

  • Kalf, D. F., Crommentuijn, T., & van de Plassche, E. J. (1997). Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs). Ecotoxicology and Environmental Safety, 36, 89–97.

    CAS  Google Scholar 

  • Katsoyiannis, A., Terzi, E., & Cai, Q. Y. (2007). On the use of PAH molecular diagnostic ratios in sewage sludge for the understanding of the PAH sources. Is this use appropriate? Chemosphere, 69(8), 1337–1339.

    CAS  Google Scholar 

  • Kavouras, I. G., Koutrakis, P., Tsapakis, M., Lagoudaki, E., Stephanou, E. G., Von Baer, D., et al. (2001). Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environmental Science and Technology, 35, 2288–2294.

    CAS  Google Scholar 

  • Keshavarzifard, M., Moore, F., Keshavarzi, B., & Sharifi, R. (2017). Distribution, source apportionment and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in intertidal sediment of Asaluyeh, Persian Gulf. Environmental Geochemistry and Health, 40, 721–735.

    Google Scholar 

  • Khalili, N. R., Scheff, P. A., & Holsen, T. M. (1995). PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment, 29, 533–542.

    CAS  Google Scholar 

  • Kukharchyk, T. I., Khomich, V. S., Kakareka, S. V., Kurman, P. V., & Kozyrenko, M. I. (2013). Contamination of soils in the urbanized areas of Belarus with polycyclic aromatic hydrocarbons. Eurasian Soil Science, 46, 145–152.

    CAS  Google Scholar 

  • Kumar, B., Verma, V. K., Kumar, S., & Sharma, C. S. (2013). Probabilistic health risk assessment of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in urban soils from a tropical city of India. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 48, 1253–1263.

    CAS  Google Scholar 

  • Kurt-Karakus, P. B. (2012). Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk. Environment International, 50, 47–55.

    CAS  Google Scholar 

  • Kwon, H. O., & Choi, S. D. (2014). Polycyclic aromatic hydrocarbons (PAHs) in soils from a multi-industrial city, South Korea. Science of the Total Environment, 470–471, 1494–1501.

    Google Scholar 

  • Larsen, R. K., III, & Baker, J. E. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environmental Science and Technology, 37, 1873–1881.

    CAS  Google Scholar 

  • Larsen, J. C., & Larsen, P. B. (1998). Chemical carcinogens. In R. E. Hester & R. M. Harrison (Eds.), Air Pollution and Health (pp. 33–56). Cambridge: The Royal Society of Chemistry.

    Google Scholar 

  • Lin, C., Liu, J., Wang, R., Wang, Y., Huang, B., & Pan, X. (2013). Polycyclic aromatic hydrocarbons in surface soils of Kunming, China: concentrations, distribution, sources, and potential risk. Soil and Sediment Contamination, 22, 753–766.

    CAS  Google Scholar 

  • Liu, W., Ma, L., Abuduwaili, J., & Li, Y. (2017). Distribution, source analysis, and ecological risk assessment of polycyclic aromatic hydrocarbons in the typical topsoil of the Issyk-Kul Lake Basin. Environmental Monitoring and Assessment, 189, 398. https://doi.org/10.1007/s10661-017-6113-1.

    Article  CAS  Google Scholar 

  • Liu, S., Xia, X., Yang, I., Shen, M., & Liu, R. (2010). Polycyclic aromatic hydrocarbons in urban soils of different land uses in Beijing, China: Distribution, sources and their correlation with the city’s urbanization history. Journal of Hazardous Materials, 177, 1085–1092.

    CAS  Google Scholar 

  • Long, E. R., MacDonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19, 81–97.

    Google Scholar 

  • Luo, X.-S., Ding, J., Xu, B., Wang, Y.-J., Li, H.-B., & Yu, S. (2012). Incorporating bioaccessibility into health risk assessments of heavy metals in urban park soils. Science of the Total Environment, 424, 88–96.

    CAS  Google Scholar 

  • Ma, W.-L., Li, Y.-F., Sun, D.-Z., & Qi, H. (2009). Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in topsoils of Harbin, China. Archives of Environmental Contamination and Toxicology, 57, 670–678.

    CAS  Google Scholar 

  • Ma, J., & Zhou, Y. (2011). Soil pollution by polycyclic aromatic hydrocarbons: a comparison of two cities. Journal of Environmental Science, 23, 1518–1523.

    CAS  Google Scholar 

  • Maliszewska-Kordybach, B. (1996). Polycyclic aromatic hydrocarbons in agricultural soils in Poland: Preliminary proposals for criteria to evaluate the level of soil contamination. Applied Geochemistry, 11, 121–127.

    Google Scholar 

  • Man, Y. B., Kang, Y., Wang, H. S., Lau, W., Li, H., Sun, X. I., et al. (2013). Cancer risk assessments of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons. Journal of Hazardous Materials, 261, 770–776.

    CAS  Google Scholar 

  • Mannino, M. R., & Orecchio, S. (2008). Polycyclic aromatic hydrocarbons (PAHs) in indoor dust matter of Palermo (Italy) area: Extraction, GC–MS analysis, distribution and sources. Atmospheric Environment, 42, 1801–1817.

    CAS  Google Scholar 

  • Morillo, E., Romero, A. S., Maqueda, C., Madrid, L., Ajmone-Marsan, F., Grcman, H., et al. (2007). Soil pollution by PAHs in urban soils: A comparison of three European cities. Journal of Environmental Monitoring, 9, 1001–1008.

    CAS  Google Scholar 

  • Nadal, M., Schuhmacher, M., & Domingo, J. L. (2004). Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environmental Pollution, 132, 1–11.

    CAS  Google Scholar 

  • Nam, J. J., Thomas, G. O., Jaward, F. M., Steinnes, E., Gustafsson, O., & Jones, K. C. (2008). PAHs in background soils from Western Europe: Influence of atmospheric deposition and soil organic matter. Chemosphere, 70, 1596–1602.

    CAS  Google Scholar 

  • Nguyen, T. C., Loganathan, P., Nguyen, T. V., Vigneswaran, S., Kandasamy, J., Slee, D., et al. (2014). Polycyclic aromatic hydrocarbons in road-deposited sediments, water sediments, and soils in Sydney, Australia: Comparisons of concentration distribution, sources and potential toxicity. Ecotoxicology and Environmental Safety, 104, 339–348.

    CAS  Google Scholar 

  • Nisbet, I. C. T., & LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16, 290–300.

    CAS  Google Scholar 

  • Orecchio, S. (2010). Assessment of polycyclic aromatic hydrocarbons (PAHs) in soils of a Natural Reserve (Isoladelle Femmine) (Italy) located in front of a plant for the production of cement. Journal of Hazardous Materials, 173, 358–368.

    CAS  Google Scholar 

  • Parinos, C., & Gogou, A. (2016). Suspended particle-associated PAHs in the open eastern Mediterranean Sea: Occurrence, sources and process affecting their distribution patterns. Marine Chemistry, 180, 42–50.

    CAS  Google Scholar 

  • Park, S. S., Kim, Y. J., & Kang, C. H. (2002). Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmospheric Environment, 36, 2917–2924.

    CAS  Google Scholar 

  • Peng, C., Chen, W., Liao, X., Wang, M., Ouyang, Z., Jiao, W., et al. (2011). Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk. Environmental Pollution, 159, 802–808.

    CAS  Google Scholar 

  • Ping, L. F., Luo, Y. M., Zhan, H. B., Li, Q. B., & Wu, L. H. (2007). Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta region, east China. Environmental Pollution, 147, 358–365.

    CAS  Google Scholar 

  • Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environment, 42, 2895–2921.

    CAS  Google Scholar 

  • Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. T. (1993). Sources of fine organic aerosol. 2. Non-catalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environmental Science and Technology, 27, 636–651.

    CAS  Google Scholar 

  • Seagrave, J., McDonald, J. D., Gigliotti, A. P., Nikula, K. J., Seilkop, S. K., Gurevich, M., et al. (2002). Mutagenicity and in vivo toxicity of combined particulate and semivolatile organic fractions of gasoline and diesel engine emissions. Toxicological Sciences, 70, 212–226.

    CAS  Google Scholar 

  • Simcik, M. F., Eisenreich, S. J., & Lioy, P. J. (1999). Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmospheric Environment, 33, 5071–5079.

    CAS  Google Scholar 

  • Škrbić, B., Cvejanov, J., & Ðurišić-Mladenović, N. (2005). Polycyclic aromatic hydrocarbons in surface soils of Novi Sad and bank sediments of the Danube River. Journal of Environmental Science and Health, Part A, 40, 29–42.

    Google Scholar 

  • Škrbić, B. D., Ðurišić-Mladenović, N., Tadić, D. J., & Cvejanov, J. D. (2017). Polycyclic aromatic hydrocarbons in urban soils of Novi Sad, Serbia: Occurrence and cancer risk assessment. Environmental Science and Pollution Research, 24, 16148–16159.

    Google Scholar 

  • Suman, S., Sinha, A., & Tarafdar, A. (2016). Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India. Science of the Total Environment, 545–546, 353–360.

    Google Scholar 

  • Sun, L., Geng, Y., Sarkis, J., Yang, M., Xi, F., Zhang, Y., et al. (2013). Measurement of polycyclic hydrocarbons (PAHs) in a Chinese brown field redevelopment site: The case of Shenyang. Ecological Engineering, 53, 115–119.

    Google Scholar 

  • Tesi, G. O., Iwegbue, C. M. A., Emuh, F. N., & Nwajei, G. E. (2016). Lagdo Dam Flood Disaster of 2012: An assessment of the concentrations, sources, and risks of PAHs in floodplain soils of the lower reaches of River Niger, Nigeria. Journal of Environmental Quality, 45, 305–314.

    CAS  Google Scholar 

  • USEPA (United States Environmental Protection Agency). (1989). Risk assessment guidance for Superfund, Vol. I: Human health evaluation manual. Office of Solid Waste and Emergency Response EPA/540/1-89/002.

  • USEPA (United States Environmental Protection Agency). (1993). Risk–based concentration Table. US Environmental Protection Agency, Region 111 (Third Quarter).

  • USEPA (United States Environmental Protection Agency). (2001). Risk Assessment Guidance for Superfund (RAGS). Vol. III - Part A, Process for conducting probabilistic risk assessment. EPA 540-R-02-002. Office of Emergency and Remedial Response, US Environmental Protection Agency, Washington, DC.

  • USEPA (United States Environmental Protection Agency). (2009). Risk assessment guidance for Superfund. Volume 1: Human Health Evaluation Manual (F, supplemental guidance for Inhalation Risk Assessment). https://www.epa.gov/sites/production/files/201509/documents/rags_a.pdf.

  • Vane, C. H., Kim, A. W., Beriro, D. J., Cave, M. R., Knights, K., Moss-Hayes, V., et al. (2014). Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. Applied Geochemistry, 51, 303–314.

    CAS  Google Scholar 

  • Wang, Z., Chen, J. W., & Qiao, X. L. (2007). Distribution and sources of polycyclic hydrocarbons from urban to rural soils: A case study of Dilan, China. Chemosphere, 68, 965–971.

    CAS  Google Scholar 

  • Wang, X. T., Chen, L., Wang, X. K., Lei, B. L., Sun, Y. F., Zhou, J., et al. (2015a). Occurrence, sources and health risk assessment of polycyclic aromatic hydrocarbons in urban (Pudong) and suburban soils from Shanghai in China. Chemosphere, 119, 1224–1232.

    CAS  Google Scholar 

  • Wang, W. T., Massey Simonich, S. L., Xu, M. E., Zhao, J. Y., Zhang, N., Wang, R., et al. (2010). Concentrations, sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing, Tianjin and surrounding areas, North China. Environmental Pollution, 158, 1248–1251.

    Google Scholar 

  • Wang, X. T., Miao, Y., Zhang, Y., Li, Y. C., Wu, M. H., & Yu, G. (2013). Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: Occurrence, source apportionment and potential human health risk. Science of the Total Environment, 447, 80–89.

    CAS  Google Scholar 

  • Wang, G., Mielke, W. H., Quach, V., Gonzales, C., & Zhang, Q. (2004). Determination of polycyclic aromatic hydrocarbons and trace metals in New Orleans. Soil and Sediment Contamination, 13, 313–327.

    Google Scholar 

  • Wang, M., Wang, C., Hu, X., Zhang, H., He, S., & Lv, S. (2015b). Distribution and sources of petroleum, aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Bohai Bay and its adjacent river, China. Marine Pollution Bulletin, 90, 88–94.

    CAS  Google Scholar 

  • Wang, S., Wang, Y., Ran, L., & Su, T. (2015c). Climatic and anthropogenic impacts on runoff changes in the Songhua River basin over the last 56 years (1955–2010), Northeastern China. CATENA, 127, 258–269.

    Google Scholar 

  • Wang, G., Zhang, Q., Ma, P., Rowden, J., Mielke, H. W., Gonzales, C., et al. (2008). Sources and distribution of polycyclic aromatic hydrocarbons in urban soils: Case studies of Detroit and New Orleans. Soil and Sediment Contamination, 17, 547–563.

    CAS  Google Scholar 

  • Wang, L., Zhang, P., Wang, L., Zhang, W., Shi, X., Lu, X., et al. (2018). Polycyclic aromatic hydrocarbons in urban soil in the semi-arid city of Xi’an, Northwest China: Composition, distribution, sources, and relationships with soil properties. Archives of Environmental Contamination and Toxicology, 75, 351–366.

    CAS  Google Scholar 

  • Wilcke, W. (2000). Polycyclic aromatic hydrocarbons (PAHs) in soil-A review. Journal of Plant Nutrition and Soil Science, 163, 229–248.

    CAS  Google Scholar 

  • Yadav, I. C., Devi, N. L., Li, J., & Zhang, G. (2018). Polycyclic aromatic hydrocarbons in house dust and surface soil in major urban regions of Nepal: Implication on source apportionment and toxicological effect. Science of the Total Environment, 616–617, 223–235.

    Google Scholar 

  • Yang, B., Xue, N., Zhou, L., Li, F., Cong, X., Han, B., et al. (2012). Risk assessment and sources of polycyclic aromatic hydrocarbons in agricultural soils of Huanghuai plain, China. Ecotoxicology and Environmental Safety, 84, 304–310.

    CAS  Google Scholar 

  • Yang, J., Yu, F., Yu, Y., Zhang, J., Wang, R., Srinivasulu, M., et al. (2017). Characterization, source apportionment, and risk assessment of polycyclic aromatic hydrocarbons in urban soil of Nanjing, China. Journal of Soils and Sediments, 17, 1116–1125.

    CAS  Google Scholar 

  • Yu, G., Zhang, Z., Yang, G., Zheng, W., Xu, L., & Cai, Z. (2014). Polycyclic aromatic hydrocarbons in urban soils of Hangzhou: status, distribution, sources, and potential risk. Environmental Monitoring and Assessment, 186, 2775–2784.

    CAS  Google Scholar 

  • Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515.

    CAS  Google Scholar 

  • Zhang, H. B., Luo, Y. M., Wong, M. H., Zhao, Q. G., & Zhang, G. L. (2006). Distributions and concentrations of PAHs in Hong Kong soils. Environment Pollution, 141, 107–114.

    CAS  Google Scholar 

  • Zhang, J., Yang, J. C., Wang, R. Q., Hou, H., Du, X. M., Fan, S. K., et al. (2013). Effects of pollution sources and soil properties on distribution of polycyclic aromatic hydrocarbons and risk assessment. Science of the Total Environment, 463–464, 1–10.

    Google Scholar 

  • Zheng, N., Liu, J., Wang, Q., & Liang, Z. (2010a). Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Science of the Total Environment, 408, 726–733.

    CAS  Google Scholar 

  • Zheng, N., Liu, J., Wang, Q., & Liang, Z. (2010b). Heavy metals exposure of children from stairway and sidewalk dust in the smelting district, northeast of China. Atmospheric Environment, 44, 3239–3245.

    CAS  Google Scholar 

Download references

Acknowledgement

BSM thanks the National Research Foundation of South Africa (NRF) for research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chukwujindu M. A. Iwegbue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 632 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehigbor, M.J., Iwegbue, C.M.A., Eguavoen, O.I. et al. Occurrence, sources and ecological and human health risks of polycyclic aromatic hydrocarbons in soils from some functional areas of the Nigerian megacity, Lagos. Environ Geochem Health 42, 2895–2923 (2020). https://doi.org/10.1007/s10653-020-00528-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00528-z

Keywords

Navigation