Skip to main content
Log in

Pteridophytes in phytoremediation

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Soil contamination by heavy metals and metalloids is a serious problem which needs to be addressed. There are several methods for removal of contaminants, but they are costly, while the method of phytoremediation is eco-friendly and cost-effective. Pteridophytes have been found to remediate heavy metal-contaminated soil. Pteridophytes are non-flowering plant that reproduces by spores. Pteris vittata has been reported as the first fern plant to hyperaccumulate arsenic. The Pteris species belongs to the order Pteridales. Other ferns that are known phytoremediators are, for example, Nephrolepis cordifolia and Hypolepis muelleri (identified as phytostabilisers of Cu, Pb, Zn and Ni); similarly Pteris umbrosa and Pteris cretica accumulate arsenic in leaves. So, pteridophytes have a number of species that accumulate contaminants. Many of them have been identified, while various other are being explored. The present review article describes the phytoremediation potential of pteridophytes plants and suggests as a potential asset for phytoremediation programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—Concepts and applications. Chemosphere,91, 869–881.

    CAS  Google Scholar 

  • Alkorta, I., Hernandez-Allica, J., Becerril, J. M., Amezaga, I., Albizu, I., & Garbisu, C. (2004). Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Reviews in Environmental Science and Bio/Technology,3, 71–90.

    CAS  Google Scholar 

  • Alscher, R. G., Erturk, N., & Heath, L. S. (2002). Role of superoxide dismutase (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany,53, 1331–1341.

    CAS  Google Scholar 

  • Alscher, R. G., & Hess, J. L. (1993). Antioxidants in higher plants. Boca Raton: CRC Press.

    Google Scholar 

  • Asada, K. (1992). Ascorbate peroxidise: A hydrogen-peroxide scavenging enzyme in plants. Physilogia Plantarum,85, 235–241.

    CAS  Google Scholar 

  • Asbchin, S. A., Omran, A. N., & Jafari, N. (2012). Potential of Azolla filiculoides in the removal of Ni and Cu from wastewaters. African Journal of Biotechnology,11(95), 16158–16164.

    Google Scholar 

  • Baskaran, X. R., Vigila, A. V. G., Zhang, S. Z., Feng, S. X., & Liao, W. B. (2018). A review of the use of pteridophytes for treating human ailments. Journal of Zhejiang University-Science B,19(2), 85–119.

    CAS  Google Scholar 

  • Bennicilli, R., Stępniewska, Z., Banach, A., Szajnocha, K., & Ostrowski, J. (2003). The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere,55(2004), 141–146.

    Google Scholar 

  • Chaudhry, Q., Blom-Zandstra, M., Gupta, S., & Joner, E. J. (2005). Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environmental Science and Pollution Research,12, 34–48.

    CAS  Google Scholar 

  • Chen, T. B., Wei, C. Y., & Huang, Z. C. (2002a). Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation. Chinese Science Bulletin,47(11), 902–905.

    CAS  Google Scholar 

  • Chen, T. B., Wei, C. Y., Huang, Z. C., Lu, Q. F., Huang, Q. G., & Fan, Z. L. (2002b). P. vittata L.: An arsenic hyperaccumulator and it character accumulating in arsenic. Chinese Science Bulletin,47, 207–210.

    Google Scholar 

  • Dhir, B. (2009). Salvinia: An aquatic fern with potential use in phytoremediation. Environment & We: An International Journal of Science and Technology,4, 23–27.

    Google Scholar 

  • Dhir, B., Sharmila, P., Saradhi, P. P., Sharma, S., Kumar, R., & Mehta, D. (2011). Heavy metal induced physiological alterations in Salvinia natans. Ecotoxicology and Environmental Safety,74(2011), 1678–1684.

    CAS  Google Scholar 

  • Draghiceanu, O. A., Bobrescu, C. M., & Soare, L. C. (2014). Application of pteridophytes in phytoremediation. Current Trends in Natural Sciences,3(6), 68–73.

    Google Scholar 

  • Du, W. B., Li, Z. A., Zou, B., & Peng, S. L. (2005). Pteris multida Poir., a new arsenic hyperaccumulator: Characteristics and potential. International Journal of Environment and Pollution,23, 388–396.

    CAS  Google Scholar 

  • Dushenkov, V. Nanda, Kumar, P. B. A., Motto, H., & Rakin, I. (1995). Rhizofiltration: The use of plants to remove heavy metals from aqueous streams. Environmental Science and Technology,29, 1239–1245.

    CAS  Google Scholar 

  • Elekes, C. C. (2014). Eco-technological solutions for the remediation of polluted soil and heavy metal recovery. In M. C. Hernández-Soriano (Ed.), Environmental risk assessment of soil contamination (pp. 309–335). Rijeka: InTech.

    Google Scholar 

  • EPA. (2000). National Primary Drinking Water Regulations: arsenic and clarifications to compliance and new source contaminants monitoring; Proposed Rule (40 CFR Parts 141 and 142). Federal Register,65, 38888–38983.

    Google Scholar 

  • Francesconi, K., Visoottiviseth, P., Sridokchan, W., & Goessler, W. (2002). Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Science Total Environment,284, 27–35.

    CAS  Google Scholar 

  • Fuentes, I. I., Espadas-Gil, F., Talavera-May, C., Fuentes, G., & Santamaria, J. M. (2014). Capacity of the aquatic fern (Salvinia minima Baker) to accumulate high concentration of nickel in its tissues, and its effect on plant physiological processes. Aquatic Toxicology,155, 142–150.

    CAS  Google Scholar 

  • Ganji, M. T., Khoaravi, M., & Rakhshaee, R. (2005). Biosorption of Pb, Cd, Cu and Zn from the waste water by treated Azolla filiculoides with H2O2/MgCl2. International Journal of Environmental Science and Technology,1(4), 265–271.

    CAS  Google Scholar 

  • Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its byproducts. Applied Ecology and Environmental Research,3, 1–18.

    Google Scholar 

  • Glick, B. R. (2010). Using soil bacteria to facilitate phytoremediation. Biotechnology Advances,28, 367–374.

    CAS  Google Scholar 

  • Gonzaga, M. I. S., Gonzaga, J. A., & Ma, L. Q. (2006). Arsenic phytoextraction and hyperaccumulation by fern species. Science Agriculture (Piracicaba, Brazil),63(1), 90–101.

    CAS  Google Scholar 

  • Gratao, P. L., Polle, A., Lea, P. J., & Azavedo, R. A. (2005). Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology,32, 481–494.

    CAS  Google Scholar 

  • Hegedus, A., Jakabova, S., & Simon, L. (2009). Induced phytoextraction of lead from contaminated soil. Acta Universitatis Sapientiae, Agriculture and Environment,1, 116–122.

    Google Scholar 

  • Holtra, A., Traczewska, T. M., Sitarska, M., & Wojdyla, D. Z. (2010). Assessment of the phytoremediation efficacy of boron contaminated waters by Salvinia natans. Environmental Protection Engineering,36(4), 87–94.

    CAS  Google Scholar 

  • Hoogwijk, M. M., Faaij, A., van den Broek, R., Berndes, G., Gielen, D., & Turkenburg, W. (2003). Exploration of the ranges of the global potential of biomass for energy. Biomass and Bioenergy,25, 119–133. https://doi.org/10.1016/S0961-9534(02)00191-5.

    Article  Google Scholar 

  • Horne, A. J. (2000). Phytoremediation by constructed wetlands. In N. Terry & G. Banuelos (Eds.), Phytoremediation of contaminated soils and waters (pp. 13–39). Boca Raton: CRC Press LLC.

    Google Scholar 

  • Huang, X. D., El-Alawi, Y., Penrose, D. M., Glick, B. R., & Greenberg, B. M. (2004). A multiprocess phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environmental Pollution,130, 465–476.

    CAS  Google Scholar 

  • Indriolo, E., Na, G., Ellis, D., Salt, D.E., & Banks, J.A., (2010). A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. The Plant Cell, 22(6), 2045–2057.

    CAS  Google Scholar 

  • Kachenko, A. G., Singh, B., & Bhatia, N. P. (2007). Heavy metal tolerance in common fern species. Australian Journal of Botany,55(1), 63–73.

    CAS  Google Scholar 

  • Khan, A. G. (2006). Mycorrhizoremediation—An enhanced form of phytoremediation. Journal of Zhejiang University Science B,7, 503–514.

    Google Scholar 

  • Klopper, R. R. (2011). The use of ferns in phytoremediation. Pteridoforum, 96, 1–5.

    Google Scholar 

  • Koller, C. E., Patrick, J. W., Rose, R. J., Offler, C. E., & MacFarlane, G. R. (2007). Pterisumbrosa R.Br. as an arsenic hyperaccumulator: Accumulation, partitioning and comparison with the established hyperaccumulator Pteris vittata. Chemosphere,66, 1256–1263.

    CAS  Google Scholar 

  • Kreft, H., Jetz, W., Mutke, J., & Barthlott, W. (2010). Contrasting environmental and regional effects on global pteridophyte and seed plant diversity. Ecography,33, 408–419.

    Google Scholar 

  • Kumar, S., Dubey, R. S., Tripathi, R. D., Chakrabarty, D., & Trivedi, P. K. (2015). Omics and biotechnology of arsenic stress and detoxification in plants: Current updates and prospective. Environment International,74, 221–230.

    CAS  Google Scholar 

  • Kumar, P. B. A., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: The use of plants to remove heavy metals from soils. Environmental Science and Technology,29, 1232–1238.

    CAS  Google Scholar 

  • Li, X. X., Zhou, Z. Y., & Guo, S. X. (1981). On the development and evolution of plant kindom (pp. 50–51). Beijing: Science Press. (in Chinese).

    Google Scholar 

  • Lin, C. C., & Kao, C. H. (2000). Effect of NaCl stress on H2O2 metabolism in rice leaves. Journal of Plant Growth Regulation,30, 151–155.

    CAS  Google Scholar 

  • Ma, L. Q., Tu, K. M., Komar, C., Zhang, W., Cai, Y., & Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic: A hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature,409, 579.

    CAS  Google Scholar 

  • Ma, J. F., Yamaji, N., Mitani, N., Xu, X. Y., Su, Y. H., McGrath, S. P., et al. (2008). Transporters of arsenite in rice grain. Proceedings of the National Academy of Sciences,105(29), 9931–9935.

    CAS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta,58, 201–235.

    CAS  Google Scholar 

  • Meers, E., Vandecasteele, B., Ruttens, A., Vangronsveld, J., & Tack, F.M.G., (2007). Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environmental and Experimental Botany, 60(1), 57–68.

    CAS  Google Scholar 

  • Meharg, A. A. (2002). Variation in arsenic accumulation: Hyperaccumulation in ferns and their allies. New Phytologist,157, 25–31.

    Google Scholar 

  • Meharg, A. A., & Jardine, L. (2003). Arsenite transport into paddy rice (Oryza sativa) roots. New Phytologist,154(1), 29–43.

    Google Scholar 

  • Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments—An emerging remediation technology. Environmental Health Perspectives,116, 278–283.

    CAS  Google Scholar 

  • Miller, G., Shulaev, V., & Mittler, R. (2008). Reactive oxygen signalling and abiotic stress. Plant Physiology,133, 481–489.

    CAS  Google Scholar 

  • Moosavi, S. G., & Seghatoleslami, M. J. (2013). Phytoremediation: A review. Advance in Agriculture and Biology,1, 5–11.

    Google Scholar 

  • Mudgal, V., Madaan, N., & Mudgal, A. (2010). Heavy metals in plants: Phytoremediation—Plants used to remediate heavy metal pollution. Agriculture and Biology Journal of North America,1, 40–46.

    CAS  Google Scholar 

  • Nishizono, H., Ichikawa, H., Suziki, S., & Ishii, F. (1987). The role of the root cell wall in the heavy metal tolerance in Anthyrium yokoscence. Plant and Soil,101(1), 15–20.

    CAS  Google Scholar 

  • Pandey, V. C., & Bajpai, O. (2019). Phytoremediation: From theory toward practice. In V. C. Pandey & K. Bauddh (Eds.), Phytomanagement of polluted sites. Market opportunities in sustainable phytoremediation (pp. 1–49). Amsterdam: Elsevier.

    Google Scholar 

  • Pandey, V. C., Bajpai, O., & Singh, N. (2016). Energy crops in sustainable phytoremediation. Renewable and Sustainable Energy Reviews,54, 58–73.

    Google Scholar 

  • Pandey, V. C., Pandey, D. N., & Singh, N. (2015). Sustainable phytoremediation based on naturally colonizing and economically valuable plants. Journal of Cleaner Production,86, 37–39.

    CAS  Google Scholar 

  • Pandey, V. C., Rai, A., & Korstad, J. (2019). Aromatic crops in phytoremediation: From contaminated to waste dumpsites. In V. C. Pandey & K. Bauddh (Eds.), Phytomanagement of polluted sites. Market opportunities in sustainable phytoremediation (pp. 255–275). Amsterdam: Elsevier.

    Google Scholar 

  • Pandey, V. C., & Singh, N. (2015). Aromatic plants versus arsenic hazards in soils. Journal of Geochemical Exploration,157, 77–80.

    CAS  Google Scholar 

  • Pandey, V. C., Singh, K., Singh, J. S., Kumar, A., Singh, B., & Singh, R. P. (2012). Jatropha curcas: A potential biofuel plant for sustainable environmental development. Renewable and Sustainable Energy Reviews,16, 2870–2883.

    CAS  Google Scholar 

  • Pandey, V. C., & Souza-Alonso, P. (2019). Market opportunities in sustainable phytoremediation. In V. C. Pandey & K. Bauddh (Eds.), Phytomanagement of polluted sites. Market opportunities in sustainable phytoremediation (pp. 51–82). Amsterdam: Elsevier.

    Google Scholar 

  • Paz-Ferreiro, J., Lu, H., Fu, S., Mendez, A., & Gasco, G. (2014). Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review. Solid Earth,5, 65–75.

    Google Scholar 

  • Pongthornpruek, S., Pampasit, S., Sriprang, N., Nabheerong, P., & Promtep, K. (2008). Heavy metal accumulation in soil and some fern species at PhuSoi Dao National Park, Phitsanulok Province, Thailand. NU Science Journal,5(2), 151–164.

    Google Scholar 

  • Prasad, M. N. V., & Freitas, H. M. O. (2003). Metal hyperaccumulation in plants—Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology,6, 285–321.

    Google Scholar 

  • Praveen, A., Mehrotra, S., & Singh, N. (2017). Rice planted along with accumulators in arsenic amended plots reduced arsenic uptake in grains and shoots. Chemosphere,184, 1327–1333. https://doi.org/10.1016/j.chemosphere.2017.06.107.

    Article  CAS  Google Scholar 

  • Praveen, A., Mehrotra, S., & Singh, N. (2019). Mixed plantation of wheat and accumulators in arsenic contaminated plots: A novel way to reduce the uptake of arsenic in wheat and load on antioxidative defence of plant. Ecotoxicology and Environmental Safety,182, 109462.

    CAS  Google Scholar 

  • Preetha, S. S., & Kaladevi, V. (2014). Phytoremediation of heavy metals using aquatic macrophytes. World Journal of Environmental Sciences,3(1), 34–41.

    Google Scholar 

  • Punshon, T., Dickinson, N. M., & Lepp, N. W. (1996). The potential of Salix clones for bioremediating metal polluted soil. In I. Glimmerveen (Ed.), Heavy metals and trees (pp. 93–104). Edinburgh: Institute of Chartered Foresters.

    Google Scholar 

  • Rao, E. P., Akshata, S., Gopinath, C. T., Ravindra, N. S., Hebbar, A., & Prasad, N. (2015). Vetiver production for small farmers in India. Sustainable agriculture reviews (pp. 337–355). Cham: Springer.

    Google Scholar 

  • Raskin, I., & Ensley, B. D. (2000). Phytoremediation of toxic metals: Using plants to clean up the environment (pp. 53–70). New York: Wiley.

    Google Scholar 

  • Rathinasabapathi, B., Rangasamy, M., Froeba, J., Cherry, R. H., McAuslane, H. J., Capinera, J. L., et al. (2007). Arsenic hyperaccumulation in the Chinese brake fern (Pteris vittata) deters grasshopper (Schistocerca americana) herbivory. New Phytologist,175, 363–369.

    CAS  Google Scholar 

  • Reeves, R. D. (2003). Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant and Soil,249(1), 57–65.

    CAS  Google Scholar 

  • Riddell-Black, D. M., Rowlands, C., & Snelson, A. (1996). The take up of heavy metals by wood fuel crops-implications for emission and economics. Biomass Energy Environment. In Proceeding of the 9th European bioenergy conference (Vol. 3, pp. 1754–1759).

  • Roccotiello, E., Manfredi, A., Drava, G., Minganti, V., Mariotti, M. G., Berta, G., et al. (2010). Zinc tolerance and accumulation in the ferns Polypodium cambricum L. and Pteris vittata L. Ecotoxicology and Environmental Safety,73(6), 1264–1271.

    CAS  Google Scholar 

  • Saleh, S., Huang, X. D., Greenberg, B. M., & Glick, B. R. (2004). Phytoremediation of persistent organic contaminants in the environment. In A. Singh & O. Ward (Eds.), Soil biology: Vol. 1. Applied bioremediation and phytoremediation (pp. 115–134). Berlin: Springer.

    Google Scholar 

  • Schwab, A. P., & Banks, M. K. (1994). Biologically mediated dissipation of polyaromatic hydrocarbons in the root zone. In T. A. Anderson & J. R. Coats (Eds.), Bioremediation through rhizosphere technology (pp. 132–141). Washington, DC: American Chemical Society.

    Google Scholar 

  • Sridokchan, W., Markich, S., & Visoottiviseth, P. (2005). Arsenic tolerance, accumulation and elemental distribution in twelve ferns: A screening study. Australasian Journal of Ecotoxicology,11, 101–110.

    CAS  Google Scholar 

  • Srivastava, M., Ma, L. Q., & Cotruvo, J. A. (2005). Uptake and distribution of selenium in different fern species. International Journal of Phytoremediation,7(1), 33–42.

    CAS  Google Scholar 

  • Srivastava, M., Ma, L. Q., & Santos, J. A. G. (2006). Three new arsenic hyperaccumulating ferns. Science of the Total Environment,364, 24–31.

    CAS  Google Scholar 

  • Subhashini, V., & Swamy, A. V. V. S. (2013). Phytoremediation of Pb and Ni contaminated soils using Catharanthus roseus (L.). Universal Journal of Environmental Research and Technology,3, 465–472.

    Google Scholar 

  • Sukumaran, D. (2013). Phytoremediation of heavy metals from industrial effluent using constructed wetland technology. Applied Ecology and Environmental Sciences,1(5), 92–97.

    CAS  Google Scholar 

  • Tangahu, B. V., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) up-take by plants through phytoremediation. International Journal of Chemical Engineering,2011, 939161.

    Google Scholar 

  • Thomas, B. A. (1999). Some commercial uses of pteridophytes in Central America. American Fern Journal, 89(2), 101–105.

    Google Scholar 

  • Tu, C., & Ma, L. Q. (2002). Effects of arsenic concentration and forms on arsenic uptake by the hyperaccumulator ladder brake. Journal of Environmental Quality,31(2), 641–647.

    CAS  Google Scholar 

  • United States Environmental Protection Agency. (2000). Introduction to phytoremediation. Cincinnati: USEPA.

    Google Scholar 

  • United States Environmental Protection Agency. (2001). Brownfields Technology Primer: Selecting and using phytoremediation for site cleanup (p. 46). Washington, DC: USEPA.

    Google Scholar 

  • Vamerali, T., Bandiera, M., & Mosca, G. (2010). Field crops for phytoremediation of metal-contaminated land: A review. Environmental Chemistry Letters,8, 1–17.

    CAS  Google Scholar 

  • Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., et al. (2009). Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research International,16, 765–794.

    CAS  Google Scholar 

  • Visoottiviseth, P., Francesconi, K., & Sridokchan, W. (2002). The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environmental Pollution,118, 453–461.

    CAS  Google Scholar 

  • Wan, C., Wang, Y., Wang, N., Norimatsu, W., Kusunoki, M., & Koumoto, K. (2016). Development of novel thermoelectric materials by reduction of lattice thermal conductivity. Science and Technology of Advanced Materials,11(4), 044306.

    Google Scholar 

  • Wang, H. B., Wong, M. H., Lan, C. Y., Baker, A. J. M., Qin, Y. R., Shu, W. S., et al. (2007). Uptake and accumulation of arsenic by 11 Pteris taxa from southern China. Environmental Pollution,145, 225–233.

    CAS  Google Scholar 

  • Wang, H. B., Ye, Z. H., Shu, W. S., Li, W. C., Wong, M. H., & Lan, C. Y. (2006). Arsenic uptake and accumulation in fern species growing at arsenic-contaminated sites of southern China: Field surveys. International Journal of Phytoremediation,8, 1–11.

    CAS  Google Scholar 

  • Wang, J., Zhao, F. J., Meharg, A. A., Raab, A., Feldmann, J., & McGrath, S. P. (2002). Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiology,130(3), 1552–1561.

    CAS  Google Scholar 

  • Webb, S. M., Gaillard, J. F., & Ma, L. Q. (2003). XAS speciation of arsenic in a hyperaccumulating fern. Environmental Science and Technology,37(4), 754–760.

    CAS  Google Scholar 

  • Wei, C. Y., Chen, T. B., Huang, Z. C., & Zhang, X. Q. (2002). Cretan brake (Pteris cretica L.): An arsenic-accumulating plant. Acta Ecologica Sinica,22, 777–778.

    Google Scholar 

  • Witters, N., Mendelsohn, R. O., Van Slycken, S., Weyers, N., Schreurs, E., Meers, E., et al. (2012). Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: energy production and carbon dioxide abatement. Biomass and Bioenergy,39, 454–469.

    CAS  Google Scholar 

  • Wongwatanapaiboon, J., Kangvansaichol, K., Burapatana, V., Inochanon, R., Winayanuwattikun, P., Yongvanich, T., et al. (2012a). The potential of cellulosic ethanol production from grasses in Thailand. Journal of Biomedicine and Biotechnology,2012(12), 303748. https://doi.org/10.1155/2012/303748.

    Article  CAS  Google Scholar 

  • Wongwatanapaiboon, J., Kangvansaichol, K., Burapatana, V., Inochanon, R., Winayanuwattikun, P., Yongvanich, T., & Chulalaksananukul, W. (2012). The potential of cellulosic ethanol production from grasses in Thailand. BioMed Research International. https://doi.org/10.1155/2012/303748

    Article  Google Scholar 

  • Zhao, F. J., Dunham, S. J., & McGrath, S. P. (2002). Arsenic hyperaccumulation by different fern species. New Phytologist,156, 27–31.

    CAS  Google Scholar 

  • Zheljazkov, V.D., Craker, L.E., & Xing, B., (2006). Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Environmental and Experimental Botany, 58(1–3), 9–16.

    CAS  Google Scholar 

  • Zhu, X., Kuang, Y., Xi, D., Li, J., & Wang, F. (2013). Absorption of hazardous pollutants by a medicinal fern Blechnum orientale L. BioMed Research International,2013, 192986.

    Google Scholar 

  • Zhuang, X., Chen, J., Shim, H., & Bai, Z. (2007). New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International,33, 406–413.

    Google Scholar 

Download references

Acknowledgements

Dr. Ashish Praveen is thankful to the director CSIR-NBRI, Lucknow, and also to the vice chancellor Vinoba Bhawe University (VBU), Hazaribag and principal of Markham College of Commerce (MCC), Hazaribag, for their support. Financial assistance given to Dr. Vimal Chandra Pandey as Senior Research Associate (CSIR-Pool Scientist) under Scientist’s Pool Scheme (Pool No. 13 (8931-A)/2017) by the Council of Scientific and Industrial Research, Government of India, New Delhi, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal Chandra Pandey.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveen, A., Pandey, V.C. Pteridophytes in phytoremediation. Environ Geochem Health 42, 2399–2411 (2020). https://doi.org/10.1007/s10653-019-00425-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00425-0

Keywords

Navigation