Skip to main content

Advertisement

Log in

Hydrogeochemical characteristics of a multi-layered coastal aquifer system in the Mekong Delta, Vietnam

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Groundwater is a primary freshwater source for various domestic, industrial and agricultural purposes, especially in coastal regions where there are lacking surface water supply. However, groundwater quality in coastal regions is often threatened by seawater intrusion and contamination due to both anthropogenic activities and natural processes. Therefore, insights into groundwater geochemistry and occurrences are necessary for sustainable groundwater management in coastal regions. The main aim of this study is to investigate the hydrogeochemical characteristics and their influencing factors in a coastal area of the Mekong Delta, Vietnam (MD). A total of 286 groundwater samples were taken from shallow and deep aquifers for analyzing major ions and stable isotopes. The results show that deep groundwater is dominated by Ca–HCO\(_{3}\), Ca–Na–HCO\(_3\), Ca–Mg–Cl, and Na–HCO\(_3\) while shallow groundwater is dominated by the Na–Cl water type. In this region, the main geochemical processes controlling groundwater chemistry are ion exchanges, mineralization and evaporation. Groundwater salinization in coastal aquifers of the Mekong Delta is caused by (1) paleo-seawater intrusion and evaporation occurring in the Holocene and Pleistocene aquifers, (2) dissolution of salt sediment/rock and leakage of saline from upper to lower aquifers due to excessive groundwater exploitation and hydraulic connection. High nitrate concentrations in both shallow and deep aquifers are related to human activities. These results imply that groundwater extraction may exacerbate groundwater quality-related problems and suitable solutions for sustainable groundwater management in the coastal area of the Mekong Delta are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abboud, I. A. (2018). Geochemistry and quality of groundwater of the Yarmouk basin aquifer, north Jordan. Environmental Geochemistry and Health, 40, 1405–1435.

    CAS  Google Scholar 

  • Abu-alnaeem, M. F., Yusoff, I., Ng, T. F., Alias, Y., & Raksmey, M. (2018). Assessment of groundwater salinity and quality in Gaza coastal aquifer, Gaza Strip, Palestine: An integrated statistical, geostatistical and hydrogeochemical approaches study. Science of The Total Environment, 615, 972–989.

    CAS  Google Scholar 

  • Abu Al Naeem, M. F., Yusoff, I., Ng, T. F., Maity, J. P., & Alias, Y. (2019). A study on the impact of anthropogenic and geogenic factors on groundwater salinization and seawater intrusion in Gaza coastal aquifer, Palestine: An integrated multi-techniques approach. Journal of African Earth Sciences, 156, 75–93.

    CAS  Google Scholar 

  • Ahada, C. P. S., & Suthar, S. (2018). Groundwater nitrate contamination and associated human health risk assessment in southern districts of Punjab, India. Environmental Science and Pollution Research, 25, 25336–25347.

    CAS  Google Scholar 

  • Aji, K., Tang, C., Song, X., Kondoh, A., Sakura, Y., Yu, J., et al. (2007). Characteristics of chemistry and stable isotopes in groundwater of Chaobai and Yongding River basin, North China Plain. Hydological Processes, 22(1), 63–72.

    Google Scholar 

  • An, T. D., Tsujimura, M., Le Phu, V., Kawachi, A., & Ha, D. T. (2014). Chemical characteristics of surface water and groundwater in Coastal Watershed, Mekong Delta, Vietnam. Procedia Environmental Sciences, 20, 712–721.

    CAS  Google Scholar 

  • An, Y., & Lu, W. (2018). Hydrogeochemical processes identification and groundwater pollution causes analysis in the northern Ordos Cretaceous Basin, China. Environmental Geochemistry and Health, 40, 1209–1219.

    CAS  Google Scholar 

  • An, T. D., Tsujimura, M., Phu, V. L., Ha, D. T., & Hai, N. V. (2018). Isotopic and hydrogeochemical signatures in evaluating groundwater quality in the coastal area of the Mekong Delta, Vietnam. In D. Tien Bui, A. Ngoc Do, H.-B. Bui, & N.-D. Hoang (Eds.), Advances and applications in geospatial technology and earth resources: Proceedings of the international conference on geo-spatial technologies and earth resources 2017 (pp. 293–314). Cham: Springer International Publishing.

  • Ameur, M., Hamzaoui-Azaza, F., & Gueddari, M. (2016). Nitrate contamination of Sminja aquifer groundwater in Zaghouan, northeast Tunisia: WQI and GIS assessments. Desalination and Water Treatment, 57, 23698–23708.

    CAS  Google Scholar 

  • Amiri, V., Nakhaei, M., Lak, R., & Kholghi, M. (2016). Investigating the salinization and freshening processes of coastal groundwater resources in Urmia aquifer, NW Iran. Environmental Monitoring and Assessment, 188, 233.

    Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2004). Geochemistry, groundwater and pollution. Boca Raton: CRC Press.

    Google Scholar 

  • Argamasilla, M., Barberá, J. A., & Andreo, B. (2017). Factors controlling groundwater salinization and hydrogeochemical processes in coastal aquifers from southern Spain. Science of The Total Environment, 580, 50–68.

    CAS  Google Scholar 

  • Batsaikhan, N., Lee, J. M., Nemer, B., & Woo, N. C. (2018). Water resources sustainability of Ulaanbaatar City, Mongolia. Water, 10, 750.

    Google Scholar 

  • Berg, M., Stengel, C., Trang, P. T. K., Viet, P. H., Sampson, M. L., Leng, M., et al. (2007). Magnitude of arsenic pollution in the Mekong and Red River Deltas—Cambodia and Vietnam. Science of the Total Environment, 372(2–3), 413–425.

    CAS  Google Scholar 

  • Blasco, M., Auqué, L. F., & Gimeno, M. J. (2019). Geochemical evolution of thermal waters in carbonate–evaporitic systems: The triggering effect of halite dissolution in the dedolomitisation and albitisation processes. Journal of Hydrology, 570, 623–636.

    CAS  Google Scholar 

  • Bodrud-Doza, M., Bhuiyan, M. A. H., Islam, S. M. D.-U., Quraishi, S. B., Muhib, M. I., Rakib, M. A., et al. (2019). Delineation of trace metals contamination in groundwater using geostatistical techniques: A study on Dhaka City of Bangladesh. Groundwater for Sustainable Development, 9, 100212.

    Google Scholar 

  • Carol, E. S., & Kruse, E. E. (2012). Hydrochemical characterization of the water resources in the coastal environments of the outer Río de la Plata estuary, Argentina. Journal of South American Earth Sciences, 37, 113–121.

    CAS  Google Scholar 

  • Cary, L., Petelet-Giraud, E., Bertrand, G., Kloppmann, W., Aquilina, L., Martins, V., et al. (2015). Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco, Brazil): A multi-isotope approach. Science of The Total Environment, 530(531), 411–429.

    Google Scholar 

  • Chau, N. D. G., Sebesvari, Z., Amelung, W., & Renaud, F. G. (2015). Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces. Environmental science and pollution research, 22(12), 9042–9058.

    CAS  Google Scholar 

  • Chekirbane, A., Tsujimura, M., Lachaal, F., Khadhar, S., Mlayah, A., & Kawachi, A. (2016). Quantification of groundwater-saline surface water interaction in a small coastal plain in North-East Tunisia using multivariate statistical analysis and geophysical method. Water Environment Research, 88, 2292–2308.

    CAS  Google Scholar 

  • Clauss, K., Ottinger, M., Leinenkugel, P., & Kuenzer, C. (2018). Estimating rice production in the Mekong Delta, Vietnam, utilizing time series of Sentinel-1 SAR data. International Journal of Applied Earth Observation and Geoinformation, 73, 574–585.

    Google Scholar 

  • Cui, J., Tian, L., Biggs, T. W., & Wen, R. (2017). Deuterium-excess determination of evaporation to inflow ratios of an alpine lake: Implications for water balance and modeling. Hydrological Processes, 31, 1034–1046.

    Google Scholar 

  • Dalin, C., Wada, Y., Kastner, T., & Puma, M. J. (2017). Groundwater depletion embedded in international food trade. Nature, 543(7647), 700–704.

    CAS  Google Scholar 

  • D’Alessandro, W., Bellomo, S., Brusca, L., Kyriakopoulos, K., Calabrese, S., & Daskalopoulou, K. (2017). The impact of natural and anthropogenic factors on groundwater quality in an active volcanic/geothermal system under semi-arid climatic conditions: The case study of Methana peninsula (Greece). Journal of Geochemical Exploration, 175, 110–119.

    Google Scholar 

  • Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16, 436–468.

    Google Scholar 

  • Dang, T. D., Cochrane, T. A., Arias, M. E., Van, P. D. T., & de Vries, T. T. (2016). Hydrological alterations from water infrastructure development in the Mekong floodplains. Hydrological processes, 30(21), 3824–3838.

    Google Scholar 

  • Ducci, D., Della, M. R., Mottola, A., Onorati, G., & Pugliano, G. (2019). Nitrate trends in groundwater of the Campania region (southern Italy). Environmental Science and Pollution Research, 26, 2120–2131.

    CAS  Google Scholar 

  • Ferguson, G., & Gleeson, T. (2012). Vulnerability of coastal aquifers to groundwater use and climate change. Nature Climate Change, 2, 342–345.

    Google Scholar 

  • Gat, J. R., & Tzu, Y. (1967). Modification of the isotopic composition of rainwater by processes which occur before groundwater recharge. International Atomic Energy Agency (IAEA): IAEA.

  • Guo, Q., Zhou, Z., Huang, G., & Dou, Z. (2019). Variations of groundwater quality in the multi-layered aquifer system near the Luanhe River (p. 11). Sustainability: China.

    Google Scholar 

  • Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E., & Cardenas, M. B. (2016). The global volume and distribution of modern groundwater. Nature Geoscience, 9(2), 161–167.

    CAS  Google Scholar 

  • Haase, C., Ebert, M., & Dethlefsen, F. (2016). Uncertainties of geochemical codes and thermodynamic databases for predicting the impact of carbon dioxide on geologic formations. Applied Geochemistry, 67(Supplement C), 81–92.

    CAS  Google Scholar 

  • Han, D., & Currell, M. J. (2018). Delineating multiple salinization processes in a coastal plain aquifer. Hydrology and Earth System Sciences, 22, 3473–3491.

    CAS  Google Scholar 

  • Hatipoglu, Z., Motz, L. H., & Bayari, C. S. (2009). Characterization of the groundwater flow system in the hillside and coastal aquifers of the Mersin-Tarsus region (Turkey). Hydrogeology Journal, 17(7), 1761.

    Google Scholar 

  • Ha, T. P., Dieperink, C., Dang Tri, V. P., Otter, H. S., & Hoekstra, P. (2018). Governance conditions for adaptive freshwater management in the Vietnamese Mekong Delta. Journal of Hydrology, 557, 116–127.

    Google Scholar 

  • Hem, J. D. (1989). Study and interpretation of chemical characteristics of natural waters. U.S Geology Survey Water-Supply Paper 2254.

  • Hiscock, K. M., Lloyd, J. W., & Lerner, D. N. (1991). Review of natural and artificial denitrification of groundwater. Water Research, 25(9), 1099–1111.

    CAS  Google Scholar 

  • Hoang, H. T., & Bäumle, R. (2018). Complex hydrochemical characteristics of the Middle-Upper Pleistocene aquifer in Soc Trang Province. Southern Vietnam. Environmental geochemistry and health (pp. 1–17).

  • Idowu, T. E., Nyadawa, M., & K’Orowe, M. O. (2017). Hydrogeochemical assessment of a coastal aquifer using statistical and geospatial techniques: Case study of Mombasa North Coast, Kenya. Environmental Earth Sciences, 76(12), 422.

    Google Scholar 

  • Idris, A. N., Aris, A. Z., Praveena, S. M., Suratman, S., Tawnie, I., Samsuddin, M. K. N., et al. (2016). Hydrogeochemistry Characteristics in Kampong Salang, Tioman Island, Pahang, Malaysia. IOP Conference Series: Materials Science and Engineering, 136, 012065.

    Google Scholar 

  • Isa, N. M., Aris, A. Z., & Sulaiman, W. N. A. W. (2012). Extent and severity of groundwater contamination based on hydrochemistry mechanism of sandy tropical coastal aquifer. Science of The Total Environment, 438, 414–425.

    CAS  Google Scholar 

  • Iwamori, H., Yoshida, K., Nakamura, H., Kuwatani, T., Hamada, M., & Haraguchi, S. (2017). Classification of geochemical data based on multivariate statistical analyses: Complementary roles of cluster, principal component, and independent component analyses. Geochemistry, Geophysics, Geosystems, 18, 994–1012.

    CAS  Google Scholar 

  • Jankowski, J., & Acworth, R. I. (1997). Impact of debris-flow deposits on hydrogeochemical processes and the developement of dryland salinity in the Yass River Catchment, New South Wales, Australia. Hydrogeology Journal, 5, 71–88.

    Google Scholar 

  • Jia, X., O’Connor, D., Hou, D., Jin, Y., Li, G., Zheng, C., et al. (2019). Groundwater depletion and contamination: Spatial distribution of groundwater resources sustainability in China. Science of The Total Environment, 672, 551–562.

    CAS  Google Scholar 

  • Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39, 31–36.

    Google Scholar 

  • Kanagaraj, G., Elango, L., Sridhar, S. G. D., & Gowrisankar, G. (2018). Hydrogeochemical processes and influence of seawater intrusion in coastal aquifers south of Chennai, Tamil Nadu, India. Environmental Science and Pollution Research, 25, 8989–9011.

    CAS  Google Scholar 

  • Khan, M. M. A., & Umar, R. (2010). Significance of silica analysis in groundwater in parts of Central Ganga Plain, Uttar Pradesh, India. Current Science, 98(9), 1237–1240.

    CAS  Google Scholar 

  • Khaska, M., Salle, C. L. G. L., Lancelot, J., Team, A., Mohamad, A., Verdoux, P., et al. (2013). Origin of groundwater salinity (current seawater vs. saline deep water) in a coastal karst aquifer based on Sr and Cl isotopes. Case study of the La Clape massif (southern France). Applied Geochemistry, 37, 212–227.

    CAS  Google Scholar 

  • Kim, J. H., Kim, K. H., Thao, N. T., Batsaikhan, B., & Yun, S. T. (2017). Hydrochemical assessment of freshening saline groundwater using multiple end-members mixing modeling: A study of Red River delta aquifer, Vietnam. Journal of Hydrology, 549, 703–714.

    CAS  Google Scholar 

  • Kim, R. H., Kim, J. H., Ryu, J. S., & Koh, D. C. (2018). Hydrogeochemical characteristics of groundwater influenced by reclamation, seawater intrusion, and land use in the coastal area of Yeonggwang, Korea. Geosciences Journal, 23(4), 603–619.

    Google Scholar 

  • Lee, H., Kim, S., Jun, K. W., Park, H. K., & Park, J. S. (2016). The effects of groundwater pumping and infiltration on seawater intrusion in coastal aquifer. Journal of Coastal Research, 75, 652–656.

    CAS  Google Scholar 

  • Lever, J., Krzywinski, M., & Altman, N. (2017). Principal component analysis. Nature Methods, 14, 641–642.

    CAS  Google Scholar 

  • Loáiciga, H. A., Pingel, T. J., & Garcia, E. S. (2012). Sea water intrusion by sea-level rise: Scenarios for the 21st century. Groundwater, 50, 37–47.

    Google Scholar 

  • Machel, H. G. (1999). Effects of groundwater flow on mineral diagenesis, with emphasis on carbonate aquifers. Hydrogeology Journal, 7, 94–107.

    Google Scholar 

  • Mahlknech, T. J., Merchán, D., Rosner, M., Meixner, A., & Ledesma-Ruiz, R. (2017). Assessing seawater intrusion in an arid coastal aquifer under high anthropogenic influence using major constituents, Sr and B isotopes in groundwater. Science of The Total Environment, 587(588), 282–295.

    Google Scholar 

  • Matiatos, I., Alexopoulos, A., & Godelitsas, A. (2014). Multivariate statistical analysis of the hydrogeochemical and isotopic composition of the groundwater resources in northeastern Peloponnesus (Greece). Science of the Total Environment, 476, 577–590.

    Google Scholar 

  • Matos, A. P., & Alves, C. (2016). Multivariate statistical analysis of hydrogeochemical data towards understanding groundwater flow systems in granites. Quarterly Journal of Engineering Geology and Hydrogeology, 49(2), 132–137.

    Google Scholar 

  • Mas-Pla, J., & Menció, A. (2019). Groundwater nitrate pollution and climate change: learnings from a water balance-based analysis of several aquifers in a western Mediterranean region (Catalonia). Environmental Science and Pollution Research International, 26, 2184–2202.

    CAS  Google Scholar 

  • Meng, Z., Yang, Y., Qin, Z., & Huang, L. (2018). Evaluating temporal and spatial variation in nitrogen sources along the lower reach of Fenhe River (Shanxi Province, China) using stable isotope and hydrochemical tracers. Water, 10, 231.

    Google Scholar 

  • Middelkoop, H., Stouthamer, E., & Addink, E. A. (2018). The relation between land use and subsidence in the Vietnamese Mekong delta. Science of The Total Environment, 634, 715–726.

    Google Scholar 

  • Minderhoud, P. S. J., Erkens, G., Pham, V. H., Bui, V. T., Erban, L., Kooi, H., et al. (2017). Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Environmental Research Letters, 12, 064006.

    CAS  Google Scholar 

  • Mohanty, A. K., & Rao, V. V. S. G. (2019). Hydrogeochemical, seawater intrusion and oxygen isotope studies on a coastal region in the Puri District of Odisha, India. CATENA, 172, 558–571.

    CAS  Google Scholar 

  • Mondal, N. C., Singh, V. P., Singh, V. S., & Saxena, V. K. (2010). Determining the interaction between groundwater and saline water through groundwater major ions chemistry. Journal of Hydrology, 388, 100–111.

    CAS  Google Scholar 

  • Moon, S., Huh, Y., Qin, J., & Van, P. N. (2007). Chemical weathering in the Hong (Red) River basin: Rates of silicate weathering and their controlling factors. Geochimica et Cosmochimica Acta, 71, 1411–1430.

    CAS  Google Scholar 

  • Nam, N. D. G., Akira, G., Kazutoshi, O., Trung, N. H., & Ngan, N. V. C. (2019). Assessment of groundwater quality and its suitability for domestic and irrigation use in the coastal zone of the Mekong Delta, Vietnam. In M. A. Stewart & P. A. Coclanis (Eds.), Water and power: Environmental governance and strategies for sustainability in the lower Mekong Basin (pp. 173–185). Cham: Springer International Publishing.

    Google Scholar 

  • Narany, T. S., Sefie, A., & Aris, A. Z. (2018). The long-term impacts of anthropogenic and natural processes on groundwater deterioration in a multilayered aquifer. Science of The Total Environment, 630, 931–942.

    Google Scholar 

  • Nejatijahromi, Z., Nassery, H. R., Hosono, T., Nakhaei, M., Alijani, F., & Okumura, A. (2019). Groundwater nitrate contamination in an area using urban wastewaters for agricultural irrigation under arid climate condition, southeast of Tehran, Iran. Agricultural Water Management, 221, 397–414.

    Google Scholar 

  • Nhan, N. H. (2016). Tidal regime deformation by sea level rise along the coast of the Mekong Delta. Estuarine, Coastal and Shelf Science, 183, 382–391.

    Google Scholar 

  • Nogueira, G., Stigter, T. Y., Zhou, Y., Mussa, F., & Juizo, D. (2019). Understanding groundwater salinization mechanisms to secure freshwater resources in the water-scarce city of Maputo, Mozambique. Science of The Total Environment, 661, 723–736.

    CAS  Google Scholar 

  • Parra, Suárez S., Peiffer, S., & Gebauer, G. (2019). Origin and fate of nitrate runoff in an agricultural catchment: Haean, South Korea—Comparison of two extremely different monsoon seasons. Science of The Total Environment, 648, 66–79.

    Google Scholar 

  • Peng, C., He, J. T., Wang, M. L., Zhang, Z. G., & Wang, L. (2018). Identifying and assessing human activity impacts on groundwater quality through hydrogeochemical anomalies and \({\text{ NO }}_3^{-}\), \({\text{ NH }}_4^{+}\), and COD contamination: a case study of the Liujiang River Basin, Hebei Province, P.R. China. Environmental Science and Pollution Research, 25, 3539–3556.

    CAS  Google Scholar 

  • Piña, A., Donado, L. D., Blake, S., & Cramer, T. (2018). Compositional multivariate statistical analysis of the hydrogeochemical processes in a fractured massif: La Línea tunnel project, Colombia. Applied Geochemistry, 95, 1–18.

    Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Transactions American Geophysical Union, 25, 914–928.

    Google Scholar 

  • Pradeep, K., Nepolian, M., Anandhan, P., Kaviyarasan, R., Prasanna, M. V., & Chidambaram, S. (2016). A study on variation in dissolved silica concentration in groundwater of hard rock aquifers in Southeast coast of India. IOP Conference Series: Materials Science and Engineering, 121(1), 012008.

    Google Scholar 

  • Praveena, S. M., & Aris, A. Z. (2010). Groundwater resources assessment using numerical model: A case study in low-lying coastal area. International Journal of Environmental Science & Technology, 7, 135–146.

    CAS  Google Scholar 

  • Ranjan, P., Kazama, S., & Sawamoto, M. (2006). Effects of climate change on coastal fresh groundwater resources. Global Environmental Change, 16(4), 388–399.

    Google Scholar 

  • Rao, N. S., Vidyasagar, G., Surya Rao, P., & Bhanumurthy, P. (2017). Chemistry and quality of groundwater in a coastal region of Andhra Pradesh, India. Applied Water Science, 7, 285–294.

    CAS  Google Scholar 

  • Robinson, C., Barry, D. A., McCarty, P. L., Gerhard, J. I., & Kouznetsova, I. (2009). pH control for enhanced reductive bioremediation of chlorinated solvent source zones. Science of The Total Environment, 407, 4560–4573.

    CAS  Google Scholar 

  • Russak, A., & Sivan, O. (2010). Hydrogeochemical tool to identify salinization or freshening of coastal aquifers determined from combined field work, experiments, and modeling. Environmental Science and Technology, 44(11), 4096–4102.

    CAS  Google Scholar 

  • Saito, T., Hamamoto, S., Ueki, T., Ohkubo, S., Moldrup, P., Kawamoto, K., et al. (2016). Temperature change affected groundwater quality in a confined marine aquifer during long-term heating and cooling. Water Research, 94, 120–127.

    CAS  Google Scholar 

  • Santos, I. R., Zhang, C., Maher, D. T., Atkins, M. L., Holland, R., Morgenstern, U., et al. (2017). Assessing the recharge of a coastal aquifer using physical observations, tritium, groundwater chemistry and modelling. Science of The Total Environment, 580, 367–379.

    CAS  Google Scholar 

  • Schott, J., Bénézeth, P., Gautier, Q., & Stefánsson, A. (2013). Mineral solubility and aqueous speciation under hydrothermal conditions to \(300\,^\circ \text{ C }\)—The carbonate system as an example. Reviews in Mineralogy and Geochemistry, 76, 81–133.

    Google Scholar 

  • Sefie, A., Aris, A. Z., Ramli, M. F., Narany, T. S., Shamsuddin, M. K. N., Saadudin, S. B., et al. (2018). Hydrogeochemistry and groundwater quality assessment of the multilayered aquifer in Lower Kelantan Basin, Kelantan, Malaysia. Environmental Earth Sciences, 77, 397.

    Google Scholar 

  • Selvakumar, S., Chandrasekar, N., & Kumar, G. (2017). Hydrogeochemical characteristics and groundwater contamination in the rapid urban development areas of Coimbatore, India. Water Resources and Industry, 17, 26–33.

    Google Scholar 

  • Shrestha, S., Bach, T. V., & Pandey, V. P. (2016). Climate change impacts on groundwater resources in Mekong Delta under representative concentration pathways (RCPs) scenarios. Environmental Science & Policy, 61, 1–13.

    Google Scholar 

  • Siena, M., & Riva, M. (2018). Groundwater withdrawal in randomly heterogeneous coastal aquifers. Hydrology and Earth System Sciences, 22, 2971–2985.

    CAS  Google Scholar 

  • Skrzypek, G., Mydłowski, A., Dogramaci, S., Hedley, P., Gibson, J. J., & Grierson, P. F. (2015). Estimation of evaporative loss based on the stable isotope composition of water using Hydrocalculator. Journal of Hydrology, 523, 781–789.

    CAS  Google Scholar 

  • Sracek, O., Geršl, M., Faimon, J., & Bábek, O. (2019). The geochemistry and origin of fluids in the carbonate structure of the Hranice Karst with the world’s deepest flooded cave of the Hranicka Abyss, Czech Republic. Applied Geochemistry, 100, 203–212.

    CAS  Google Scholar 

  • Stiff, H. A, Jr. (1951). The interpretation of chemical water analysis by means of patterns. Journal of Petroleum Technology, 3, 15–17.

    Google Scholar 

  • Tarki, M., Dassi, L., & Jedoui, Y. (2012). Groundwater composition and recharge origin in the shallow aquifer of the Djerid oases, southern Tunisia: Implications of return flow. Hydrological Sciences Journal, 57, 790–804.

    CAS  Google Scholar 

  • Taufiq, A., Effendi, A. J., Iskandar, I., Hosono, T., & Hutasoit, L. M. (2019). Controlling factors and driving mechanisms of nitrate contamination in groundwater system of Bandung Basin, Indonesia, deduced by combined use of stable isotope ratios, CFC age dating, and socioeconomic parameters. Water Research, 148, 292–305.

    CAS  Google Scholar 

  • Taweesin, K., Seeboonruang, U., & Saraphirom, P. (2018). The influence of climate variability effects on groundwater time series in the lower central plains of Thailand. Water, 10, 290.

    Google Scholar 

  • Thom, J. G. M., Dipple, G. M., Power, I. M., & Harrison, A. L. (2013). Chrysotile dissolution rates: Implications for carbon sequestration. Applied Geochemistry, 35, 244–254. https://doi.org/10.1016/j.apgeochem.2013.04.016.

    Article  CAS  Google Scholar 

  • Timms, W. A., Young, R. R., & Huth, N. (2012). Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment. Hydrology and Earth System Sciences, 16, 1203–1219. https://doi.org/10.5194/hess-16-1203-2012.

    Article  CAS  Google Scholar 

  • Tiwari, A. K., Pisciotta, A., & De Maio, M. (2019). Evaluation of groundwater salinization and pollution level on Favignana Island, Italy. Environmental Pollution, 249, 969–981.

    CAS  Google Scholar 

  • Trabelsi, R., & Zouari, K. (2019). Coupled geochemical modeling and multivariate statistical analysis approach for the assessment of groundwater quality in irrigated areas: A study from North Eastern of Tunisia. Groundwater for Sustainable Development, 8, 413–427.

    Google Scholar 

  • Tran, L. T., Larsen, F., Pham, N. Q., Christiansen, A. V., Tran, N., Vu, H. V., et al. (2012). Origin and extent of fresh groundwater, salty paleowaters and recent saltwater intrusions in Red River flood plain aquifers, Vietnam. Hydrogeology Journal, 20, 1295–1313.

    CAS  Google Scholar 

  • Truong, M. H., Nguyen, V. L., Ta, T. K. O., & Takemura, J. (2011). Changes in late Pleistocene-Holocene sedimentary facies of the Mekong River Delta and the influence of sedimentary environment on geotechnical engineering properties. Engineering Geology, 122(3), 146–159.

    Google Scholar 

  • Van Hung, P., Van Geer, F. C., Bui Tran, V., Dubelaar, W., & Oude Essink, G. H. P. (2019). Paleo-hydrogeological reconstruction of the fresh-saline groundwater distribution in the Vietnamese Mekong Delta since the late Pleistocene. Journal of Hydrology: Regional Studies, 23, 100594.

    Google Scholar 

  • Vengadesan, M., & Lakshmanan, E. (2019). Chapter 17–Management of coastal groundwater resources. In R. R. Krishnamurthy, M. P. Jonathan, S. Srinivasalu, & B. Glaeser (Eds.), Coastal Management (pp. 383–397). London: Academic Press.

    Google Scholar 

  • Villarroya, F., & Aldwel, C. R. (1998). Sustainable development and groundwater resources exploitation. Environmental Geology, 34(2–3), 111–115.

    Google Scholar 

  • Wada, Y., van Beek, L. P. H., van Kempen, C. M., Reckman, J. W. T. M., Vasak, S., & Bierkens, M. F. P. (2010). Global depletion of groundwater resources. Geophysical Research Letters, 37, L20402.

    Google Scholar 

  • Wagner, F., Tran, V. B., & Renaud, F. G. (2012). Groundwater resources in the Mekong Delta: Availability, utilization and risks. In F. G. Renaud & C. Kuenzer (Eds.), The Mekong Delta system: Interdisciplinary analyses of a river delta (pp. 201–220). Netherlands, Dordrecht: Springer.

    Google Scholar 

  • Walter, J., Chesnaux, R., Cloutier, V., & Gaboury, D. (2017). The influence of water/rock–water/clay interactions and mixing in the salinization processes of groundwater. Journal of Hydrology: Regional Studies, 13, 168–188.

    Google Scholar 

  • Wang, Y., Le Pape, P., Morin, G., Asta, M. P., King, G., Bártová, B., et al. (2018). Arsenic speciation in Mekong Delta sediments depends on their depositional environment. Environmental Science & Technology, 52, 3431–3439.

    CAS  Google Scholar 

  • Ward, M. H., Jones, R. R., Brender, J. D., de Kok, T. M., Weyer, P. J., Nolan, B. T., et al. (2018). Drinking water nitrate and human health: An updated review. International Journal of Environmental Research and Public Health, 15, 1557.

    Google Scholar 

  • Wood, C., & Harrington, G. A. (2015). Influence of seasonal variations in sea level on the salinity regime of a coastal groundwater-fed wetland. Groundwater, 53(1), 90–98.

    CAS  Google Scholar 

  • Xiao, H., Wang, D., Medeiros, S. C., Bilskie, M. V., Hagen, S. C., & Hall, C. R. (2019). Exploration of the effects of storm surge on the extent of saltwater intrusion into the surficial aquifer in coastal east-central Florida (USA). Science of the Total Environment, 648, 1002–1017.

    CAS  Google Scholar 

  • Yang, L., Zhu, G., Shi, P., Li, J., Liu, Y., Tong, H., et al. (2017). Spatiotemporal characteristics of hydrochemistry in Asian arid inland basin—A case study of Shiyang River Basin. Environmental Science and Pollution Research, 25, 2293–2302.

    Google Scholar 

  • Zhai, Y., Zhao, X., Teng, Y., Li, X., Zhang, J., Wu, J., et al. (2017). Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China. Ecotoxicology and environmental safety, 137, 130–142.

    CAS  Google Scholar 

  • Zhang, G., Lu, P., Wei, X., & Zhu, C. (2016). Impacts of mineral reaction kinetics and regional groundwater flow on long-term CO2 fate at Sleipner. Energy & Fuels, 30, 4159–4180.

    CAS  Google Scholar 

  • Ziadi, A., Hariga, N. T., & Tarhouni, J. (2019). Mineralization and pollution sources in the coastal aquifer of Lebna, Cap Bon, Tunisia. Journal of African Earth Sciences, 151, 391–402.

    CAS  Google Scholar 

  • Ziani, D., Boudoukha, A., Boumazbeur, A., Benaabidate, L., & Fehdi, C. (2016). Investigation of groundwater hydrochemical characteristics using the multivariate statistical analysis in Ain Djacer area, Eastern Algeria. Desalination and Water Treatment, 57, 26993–27002.

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Japanese Government scholarships (JDS and MEXT) and the University of Tsukuba for their supports for this study. We also would like to thank Mr.Nguyen Van Chanh and Mr.Thach Hoang Linh for their precious help during our field surveys. We thank the editor and three anonymous reviewers, whose constructive comments helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang An Tran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7067 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, D.A., Tsujimura, M., Vo, L.P. et al. Hydrogeochemical characteristics of a multi-layered coastal aquifer system in the Mekong Delta, Vietnam. Environ Geochem Health 42, 661–680 (2020). https://doi.org/10.1007/s10653-019-00400-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00400-9

Keywords

Navigation