Skip to main content

Advertisement

Log in

Fertilizer usage and cadmium in soils, crops and food

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Phosphate fertilizers were first implicated by Schroeder and Balassa (Science 140(3568):819–820, 1963) for increasing the Cd concentration in cultivated soils and crops. This suggestion has become a part of the accepted paradigm on soil toxicity. Consequently, stringent fertilizer control programs to monitor Cd have been launched. Attempts to link Cd toxicity and fertilizers to chronic diseases, sometimes with good evidence, but mostly on less certain data are frequent. A re-assessment of this “accepted” paradigm is timely, given the larger body of data available today. The data show that both the input and output of Cd per hectare from fertilizers are negligibly small compared to the total amount of Cd/hectare usually present in the soil itself. Calculations based on current agricultural practices are used to show that it will take centuries to double the ambient soil Cd level, even after neglecting leaching and other removal effects. The concern of long-term agriculture should be the depletion of available phosphate fertilizers, rather than the negligible contamination of the soil by trace metals from fertilizer inputs. This conclusion is confirmed by showing that the claimed correlations between fertilizer input and Cd accumulation in crops are not robust. Alternative scenarios that explain the data are presented. Thus, soil acidulation on fertilizer loading and the effect of Mg, Zn and F ions contained in fertilizers are considered using recent \(\hbox {Cd}^{2+}\), \(\hbox {Mg}^{2+}\) and \(\hbox {F}^-\) ion-association theories. The protective role of ions like Zn, Se, Fe is emphasized, and the question of Cd toxicity in the presence of other ions is considered. These help to clarify difficulties in the standard point of view. This analysis does not modify the accepted views on Cd contamination by airborne delivery, smoking, and industrial activity, or algal blooms caused by phosphates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amarasiri, S. L. (2016). Private communication based on: District-based Technical Recommendations of the Department of Agriculture, Sri Lanka for Fertilizer inputs for paddy cultivation.

  • Aravinna, P., Priyantha, N., Pitawala, A., & Yatigammana, S. K. (2017). Use pattern of pesticides and their predicted mobility into shallow groundwater and surface water bodies of paddy lands in Mahaweli river basin in Sri Lanka. Journal of Environmental Science and Health, Part B, 52(1), 37–47. https://doi.org/10.1080/03601234.2016.1229445.

    Article  CAS  Google Scholar 

  • ARL. (2012). Cadmium toxicity and Zn. Tech. rep., Analytical Research labs, Inc., Phoenix, Arizona, USA. http://www.arltma.com/Articles/CadmiumToxDoc.htm.

  • Arora, P., Vasa, P., Brenner, D., Iglar, K., McFarlane, P., Morrison, H., et al. (2013). Prevalence estimates of chronic kidney disease in Canada: Results of a nationally representative survey. Canadian Medical Association Journal, 185, E417–E423.

    Article  Google Scholar 

  • ASTDR, U. (2008). Notice of the revised priority list of hazardous substances that will be the subject of toxicological profiles. https://www.atsdr.cdc.gov/ToxProfiles/TP.asp?id=191&tid=34

  • ATSDR, U. (2013). Cadmium toxicity US standards for cadmium exposure. https://www.atsdr.cdc.gov/csem/csem.asp?csem=6&po=7

  • Baldwin, R. L. (1996). How Hofmeister ion interactions affect protein stability. Biophysical Journal, 71, 2056–2063.

    Article  CAS  Google Scholar 

  • Bandara, J., Wijewardena, H., Liyanege, J., Upul, M., & Bandara, J. (2010). Chronic renal failure in Sri Lanka caused by elevated dietary cadmium: Trojan horse of the green revolution. Toxicology Letters, 198(1), 33–39. https://doi.org/10.1016/j.toxlet.2010.04.016. Epub 2010 Apr 27.

    Article  CAS  Google Scholar 

  • Bech, J., Suarez, M., Reverter, F., Tume, P., Sánchez, P., Roca, N., et al. (2010). Selenium and other trace element in phosphorites: A comparison between those of the Bayovar-Sechura and other provenances. Journal of Geochemical Exploration, 107, 146–160. https://doi.org/10.1016/j.gexplo.2010.04.002.

    Article  CAS  Google Scholar 

  • Bickmore, B., Bosbach, D., Hochella, M., Charlet, L., & Rufe, E. (2001). In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms. American Mineralogist, 86(4), 411–423.

    Article  CAS  Google Scholar 

  • Brzóska, M. M., & Moniuszko-Jkoniuk, J. (2001). Interactions between cadmium and zinc in the orgnism. Food and Chemical Toxicology, 39, 967–980.

    Article  Google Scholar 

  • CCF12. (2018). Codex alimentarius, codex committee on contaminants in food. Tech. rep., FAO, Rome

  • CTAHR-Hawaii U (2018) Fertilizer material. Tech. rep., College of Tropical Agriculture and Human Resources, University of Hawaii, https://www.ctahr.hawaii.edu/mauisoil/c_material.aspx

  • Chaney, R. L. (2012). Chapter 2: Food safety issues for mineral and organic fertilizers. Advances in Agronomy, 117, 51–116.

    Article  CAS  Google Scholar 

  • Chen, Y., Wang, S., Nan, Z., Ma, J., Zhang, F., Li, Y., et al. (2017). Effect of fluoride and cadmium stress on the uptake and translocation of fluoride and cadmium and other mineral nutrition elements in radish in single element or co-taminated sierozem. Environmental and Experimental Botany, 134, 54–61.

    Article  CAS  Google Scholar 

  • Dharma-wardana, M. W. C. (2017). Chronic kidney disease of unknown etiology and the effect of multiple-ion interactions. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-017-0017-4.

    Article  Google Scholar 

  • Dharma-wardana, M. W. C., Amarasiri, S. L., Dharmawardene, N., & Panabokke, C. R. (2015). Chronic kidney disease of unknown aetiology and ground-water ionicity: Study based on Sri Lanka. Environmental Geochemistry and Health, 37, 221–231.

    Article  CAS  Google Scholar 

  • Dissanayake, C., & Rohana, C. (2005). Groundwater fluoride as a geochemical marker in the etiology of chronic kidney disease of unknown origin in Sri Lanka. Ceylon Journal of Science, 46, 43–17.

    Google Scholar 

  • Diyabalanage, S., Abekoon, S., Watanabe, I., et al. (2016a). Has irrigated water from Mahaweli river contributed to the kidney disease of uncertain etiology in the dry zone of Sri Lanka? Environmental Geochemistry and Health, 38, 439–454. https://doi.org/10.1007/s10653-015-9749-1.

    Article  CAS  Google Scholar 

  • Diyabalanage, S., Navarathna, T., Abeysundara, T. A., et al. (2016b). Trace elements in native and improved paddy rice from different climatic regions of Sri Lanka: Implications for public health. Springer Plus, 5, 1684. https://doi.org/10.1186/s40064-016-3547-9.

    Article  CAS  Google Scholar 

  • DOA-SL (2016). Department of Agriculture, Sri Lanka (2017) Private communication.

  • Edirisinghe, E. A. N. V., Manthrithilake, H., Pitawala, H. M. T. G. A., Dharmagunawardhane, H. A., & Wijayawardane, R. L. (2017). Geochemical and isotopic evidences from groundwater and surface water for understanding of natural contamination in chronic kidney disease of unknown etiology (CKDu) endemic zones in Sri Lanka. Isotopes in Environmental and Health Studies, 26, 1–18.

    Google Scholar 

  • Eriksson, J. (2001). Critical load set to ‘no further increase in Cd content of agricultural soils’ consequences. In Proceedings soil science and conservation research institute Bratislava, Slovak Republic, ad hoc international expert group on effect-based critical limits for heavy metals pp 54–58, Bratislavia. Slovak Republic 11th 13th Oct 2000.

  • Eriksson, J., Andersson, A., & Andersson, R. (1997). Current status of Swedish arable soils. Tech. rep., Swedish Environmental Protection Agency, Report 4778, Solna. (in Siwedish with English summary).

  • Gifford, F. J., Gifford, R. M., Eddleston, M., & Dhaun, N. (2017). Endemic nephropathy around the world. Kidney Int Rep, 2, https://doi.org/10.1016/j.ekir.2016.11.003.

    Article  Google Scholar 

  • Grant, C., Harapiak, B. J. T. L. D., & Flore, N. A. (2002). Effect of phosphate source, rate and cadmium content and use of Penicillium bilaii on phosphorus, zinc, and cadmium concentration in durum wheat. Journal of the Science of Food and Agriculture, 82, 301–308.

    Article  CAS  Google Scholar 

  • Grant, C. A., & Sheppard, S. C. (2008). Fertilizer impacts on cadmium availability in agricultural soils and crops. Human and Ecological Risk Assessment, 14, 210–228.

    Article  CAS  Google Scholar 

  • Illeperuma, O. A., Dharmagunawardhane, H. A., & Herath, K. R. P. (2009). Dissolution of aluminium from substandard utensils under high fluoride stress: A possible risk factor for chronic renal failures in the North-Central province. Journal of the National Science Foundation of Sri Lanka, 37, 219–222.

    Article  Google Scholar 

  • Jacobs, R. M., Jones, A. O. L., Fry, B. E. J., & Fox, R. M. S. (1978). Decreased long term retention of cadmium in Japanese quail produced by a combined supplement of zinc, copper and manganese. The Journal of Nutrition, 108, 901–910.

    Article  CAS  Google Scholar 

  • Jansson, G. (2002). Cadmium in arable crops. Ph.D thesis, Uppsala University of Agricultural Science, Sweden

  • Jarup, L., Berglund, M., Elinder, C. G., et al. (1998). Health effects of cadmium exposure: A review of the literature and a risk estimate. Scandinavian Journal of Work, Environment & Health, 24, 1–51.

    Article  Google Scholar 

  • Jayasinghe, P., Herath, B., & Wickremasinghe, N. (2015). Technical review report based on visit to Anuradhapura CKDu affected areas; review of input-output water of reverse-osmosis installtions. Tech. rep., COSTI (Coordinating Office for Science and Technology Innovation, Sri Lanka), https://dh-web.org/placenames/posts/COSTI-Jaysinghe-RO.pdf

  • Jayasumana, C., Fonseka, S., Fernando, A., Jayalath, K., Amarasinghe, M., Siribaddana, S., et al. (2015). Phosphate fertilizer is a main source of arsenic in areas affected with chronic kidney disease of unknown etiology in Sri Lanka. Springer Plus, 4, 90.

    Article  Google Scholar 

  • Jayatilake, N. S. M., Maheepala, P., Metha, R. F., CKDu National Research Project Team. (2013). Chronic kidney disease of uncertain aetiology, prevalence and causative factors in a developing country. BMC Nephrology, 14, 180.

    Article  Google Scholar 

  • JECFA. (2011). Joint FAO/WHO food standards programme CODEX committee on contaminants in foods fifth session. Tech. rep., WHO-FAO, Joint FAO/WHO Expert Committee on Food Additives (JECFA) http://www.fao.org/tempref/codex/Meetings/CCCF/CCCF5/cf05_INF.pdf.

  • Jorhem, L., & Slanima, P. (2000). Does organic farming reduce content of Cd and certain other trace metals in plant foods? Journal of the Science of Food and Agriculture, 80, 43–48.

    Article  CAS  Google Scholar 

  • Keller, A., & Schulin, R. (2003). Modeling heavy metal and phosphorus balances for farming systems. Nutrient Cycling in Agroecosystems, 66, 271–284.

    Article  CAS  Google Scholar 

  • Kim, D. W., Kim, K.-Y., Choi, B. S., Youn, P., Ryu, D. Y., Klassen, C. E., et al. (2007). Regulation of metal transporters by dietary iron, and the relationship between body iron levels and cadmium uptake. Archives of Toxicology, 81, 327–334.

    Article  CAS  Google Scholar 

  • Kjellstrom, T. (1979). Exposure and accumulation of cadmium in populations from Japan, the United States, and Sweden. Environ Health Perspectives, 28, 169–197.

    Article  CAS  Google Scholar 

  • Lechenet, M., Dessaint, F., Py, G., Makowski, D., & Munier-Jolain, N. (2017). Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nature Plants, 3(17), 008. https://doi.org/10.1038/nplants.2017.8.

    Article  Google Scholar 

  • Levine, K. E., Redmon, J. H., Elledge, M. F., Wanigasuriya, K. P., Smith, K., Munoz, B., et al. (2016). Quest to identify geochemical risk factors associated with chronic kidney disease of unknown etiology (CKDu) in an endemic region of Sri Lanka - a multimedia laboratory analysis of biological, food, and environmental samples. Environmental Monitoring and Assessment, 188, 548.

    Article  Google Scholar 

  • Loganathan, P., Headly, M. J., & Grace, N. D. (2008). Pasture soils contaminated with fertilizer-derived cadmium and fluorine. Reviews of Environmental Contamination and Toxicology, 129, 29–66.

    Article  Google Scholar 

  • Liu, J., Li, K., Xu, J., Liang, J., Lu, X., Yang, J., et al. (2003). Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crops Research, 83, 271–281.

    Article  Google Scholar 

  • Manoharan, V., Loganathan, P., Tillman, R. W., & Parfitt, R. L. (2007). Interactive effects of soil acidity and fluorine on soil solution aluminum chemistry and barley (hordeum vulgare l.) root growth. Environmental Pollution, 145, 778–786.

    Article  CAS  Google Scholar 

  • Matović, V., Buha, A., Bulat, Z., & Dukić-Ćosić, D. (2011). Cadmium toxicity revisited: Focus on oxidative stress induction and interactions with, Zn and Mg. Archives of Industrial Hygiene and Toxicology, 62, 65–76.

    Article  Google Scholar 

  • McLaughlin, M. J., & Singh, B. R. (1999). Cadmium in soils and plants. Dordect, Holland: Kluwer.

    Book  Google Scholar 

  • McLaughlin, M. J., Tiller, K. G., Beech, T. A., & Smart, M. K. (1994). Soil salinity causes elevated cadmium concentrations in field-grown potato tubers. Journal of Environmental Quality, 34, 1013–1018.

    Article  Google Scholar 

  • McLaughlin, M. J., Tiller, K. G., Naidu, R., & Stevens, D. P. (1996). Review: the behaviour and environmental impact of contaminants in fertilizers. Australian Journal of Soil Research, 34, 1–54.

    Article  CAS  Google Scholar 

  • Meharg, A. A., Norton, G., Deacon, V., Williams, P., Adomako, E., Price, A., et al. (2013). Variation in rice cadmium related to human exposure. Environmental Science & Technology, 47, 5613–5618.

    Article  CAS  Google Scholar 

  • Moolenaar, S. (1999). Heavy metal balances, part II. management of cadmium, copper, lead and zinc in European agro-ecosystems. Journal of Industrial Ecology, 3, 41–53.

    Article  CAS  Google Scholar 

  • Mott, S., Hoy, W., Gobe, G., Satarug, S., & Abeysekera, T. (2013). Assessment of cadmium load in renal biopsies from Sri Lankan people with chronic kidney disease of unknown origin. Nephrology Journal, 18, 15–17.

    Article  Google Scholar 

  • Mulla, D. J., Page, A. L., & Ganje, T. J. (1980). Cadmium accumulations and bioavailability in soils from long-term phosphorus fertilization. Journal of Environmental Quality, 9, 408–12.

    Article  CAS  Google Scholar 

  • Onyatta, J., & Huang, P. (2005). Phosphate-induced cadmium release from soils. Enfield: Science Publishers.

    Google Scholar 

  • Paddy Statistics. (2015). 2014/2015 Maha Season, Dept. of Census and Statistics. ISBN 978-955-577-966-1, Battaramulla. Sri Lanka.

  • Premarathne, H. M. P. L. (2006). Soil and crop contamination by toxic trace elements. Master’s thesis, Post Graduate Institute of Agriculture, University of Peradeniya, Sri Lanka, Technical Report.

  • Pullakhandam, I. R. V., & Nair, K. P. M. (2009). Iron-zinc interaction during uptake in human intestinal Caco-2 cell line: Kinetic analyses and possible mechanism. Indian Journal of Biochemistry and Biophysics, 46, 299–306.

    Google Scholar 

  • Rietra, R., Mol, G., Rietjens, I., & Römkens, P. (2017). Cadmium in soil, crops and resultant dietary exposure. Tech. rep., Wageningen Environmental Research, Alterra- sustainable soil management, Wageningen Environmental Research Rapport 2784.

  • Roberts, T. L. (2014). Cadmium and phosphorous fertilizers: The issues and the science. Procedia Engineering, 83, 52–57.

    Article  CAS  Google Scholar 

  • Rohana Chandrajith, T. A., & Dissanayake, C. B. (2012). The status of cadmium in the geo-environment of Sri Lanka. Ceylon Journal of Science (Physical Sciences), 16, 47–53.

    Google Scholar 

  • Rosen, C. J., & Bierman, P. M. (2018). Potato fertilization on irrigated soils. Minnesota: University of Minnesota Agriculture Extension Service.

    Google Scholar 

  • Sheppard, S. C., Grant, C. A., Sheppard, M. A., de Jong, R., & Long, J. (2009). Risk indicator for agricultural inputs of trace elements to Canadian soils. Journal of Environmental Quality, 38, 919–932.

    Article  CAS  Google Scholar 

  • Schroder, H. A., & Balassa, J. J. (1963). Cadmium: Uptake by vegetables from superphosphate in soil. Science, 140(3568), 819–820.

    Article  Google Scholar 

  • Sillanpää, M., & Jansson, H. (1992). Status of cadmium, lead, cobolt, and selenium in soils and plants of thirty countries. Tech. rep., FAO, Geneva

  • Singh, B. R. (1994). Trace element availability to plants in agricultural soils, with special emphasis on fertilizer inputs. Environmental Reviews, 2, 133–146. https://doi.org/10.1139/a94-009.

    Article  CAS  Google Scholar 

  • Sirot, V., Sarnieri, C., Volatier, J. L., & LeBlanc, J. C. (2008). Cadmium dietary intake and biomarker data in French high seafood consumers. Journal of Exposure Science and Environmental Epidemiology, 28, 400–409.

    Article  Google Scholar 

  • SLSI. (2016). Private communication. https://www.iso.org/member/2091.html

  • Smolders, E. (2001). Cadmium uptake by plants. International Journal of Occupational Medicine and Environmental Health, 14, 177–183.

    CAS  Google Scholar 

  • Smolders, E., & Six, L. (2013). Revisiting and updating the effect of phosphate fertilizers to cadmium accumulation in European agricultural soils. Tech. rep., KU Leuven, Belgium, http://ec.europa.eu/health/scientific_committees/environmental_risks/docs/scher_o_168_rd_en.pdf

  • Sparrow, L. A., Chapman, K. S. R., Parsley, D., Hardman, P. R., & Cullen, B. (1992). Response of potatoes (Sotanum tuberosum cv. Russet Burbank) to band-placed and broadcast high cadmium fertiliser on heavily cropped krasnozems in north-western Tasmania. Australian Journal of Experimental Agriculture, 32, 113–19.

    Article  CAS  Google Scholar 

  • Sparrow, L. A., Salardini, A. A., & Johnstone, J. (1993). Field studies of cadmium in potatoes (Solanum tuberosum L.). III. Australian Journal of Agricultural Research, 45(1), 243–249.

    Article  Google Scholar 

  • Sposito, G. (2008). The chemistry of soils (2nd ed.). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Thammitiyagodage, M., Gunatillaka, M., Ekanayaka, N., Rathnayake, C., Horadagoda, N., Jayathissa, R., et al. (2017). Ingestion of dug well water from an area with high prevalence of chronic kidney disease of unknown etiology (CKDu) and development of kidney and liver lesions in rats. Ceylon Medical Journal, 62, 20–24. https://doi.org/10.4038/cmj.v62i1.8428.

    Article  CAS  Google Scholar 

  • Tombacz, E., & Szekeres, M. (2004). Colloidal behavior of aqueous montmorillonite suspensions: The specific role of pH in the presence of indifferent electrolytes. Applied Clay Science, 27, 75–94.

    Article  CAS  Google Scholar 

  • Tòth, G., Hermann, T., Da Silva, M. R., & Montanarella, L. (2016). Heavy metals in agricultural soils of the European Union with implications for food safety. Environment International, 88, 299–309.

    Article  Google Scholar 

  • Uraguchi, S., & Fujiwara, T. (2012). Cadmium transport and tolerance in rice: Perspectives for reducing grain cadmium accumulation. Rice (N Y)., 5(1), 5.

    Article  Google Scholar 

  • Van Kauwenbergh, S. J. (1997). Cadmium and other minor elements in world resources of phosphate rock. The Fertiliser Society, 400; Proceedings, The Peterborough Fertiliser Society, P. O. Box 04, York, UK.

  • Wales University, E. (2013). Science for environmental policy in-depth report: Soil contamination: Impacts on human health. Tech. rep., EU, via Science Communication Unit, University of Wales UK, http://ec.europa.eu/environment/integration/research/newsalert/pdf/IR5_en.pdf.

  • Wanigasuriya, K. (2012). Aetiological factors of chronic kidney disease in the north central province of Sri Lanka: A review of evidence to-date. Journal of the College of Community Physicians of Sri Lanka, 17, 17–20.

    Article  Google Scholar 

  • Wasana, H. M. S., Perera, G. D. R. K., De Panduka, S., Gunawardena, P. S., Fernando, P. S., & Bandara, J. (2017). WHO water quality standards vs synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues. Nature-Scientific Reports. https://doi.org/10.1038/srep42516.

    Article  Google Scholar 

  • Weerasooriya, R., Wijesekara, H. K. D. K., & Bandara, A. (2002). Surface complexation modeling of cadmium adsorption on gibbsite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 207, 13–24.

    Article  CAS  Google Scholar 

  • World Bank. (2016). Fertilizer consumption (kilograms per hectare of arable land). Tech. rep., Food and Agriculture Organization, website: http://data.worldbank.org/indicator/AG.CON.FERT.ZS.

  • Zapata, F., & Roy, R. N. (2004). Use of phosphate rocks for sustainable agriculture. Fertilizer and plant nutrition, bulletin 13, FAO, Rome, Italy. Tech. rep., Food and Agriculture Organization of the United Nations.

  • Zhou, C.-F., Wang, Y.-J., Sun, R.-J., Liu, C., Fan, G.-P., Qin, W.-X., et al. (2014). Inhibition effect of glyphosate on the acute and subacute toxicity of cadmium to earthworm Eisenia fetida. Environmental Toxicology and Chemistry, 33, 2351–2357.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. Sarath Amarasiri for his comments and drawing attention to some references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. W. C. Dharma-wardana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharma-wardana, M.W.C. Fertilizer usage and cadmium in soils, crops and food. Environ Geochem Health 40, 2739–2759 (2018). https://doi.org/10.1007/s10653-018-0140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0140-x

Keywords

Navigation