Skip to main content
Log in

Bioaccessibility of trace elements in fine and ultrafine atmospheric particles in an industrial environment

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The lung bioaccessibility, i.e., the solubility in alveolar lung fluid of metals in particulate matter, has been recognized as an important parameter for health risk assessment, associated with the inhalation of airborne particles. The purpose of this study is to use an in vitro method to estimate the pulmonary bioaccessibility of toxic metals in different particle sizes, from a multi-influenced industrial emission area. The fine and ultrafine particles collected with cascade impactors in the chimneys and at different distances from a Fe–Mn smelter were extracted with a simulated alveolar fluid (Gamble solution). In addition, a four-step sequential extraction procedure was employed to approach the metal speciation. The bioaccessibility of metals ranged from almost insoluble for Fe (<1 %) to extremely soluble for Rb (>80 %). In terms of particle size, the trace element bioaccessibility is generally higher for the finer size fractions (submicron and ultrafine particles) than for the coarse one (>1 µm). These submicron particles have a very high number concentration and specific surface area, which confer them an important contact surface with the alveolar fluid, i.e., a higher bioaccessibility. Interestingly, the bioaccessibility of most metals clearly increases between the chimney stacks and the close environment of the studied Fe–Mn smelter, over a very short distance (800 m), possibly due to a mix with surrounding steelworks emissions. This increase is not observed over a greater distance from the smelter (2000 m), when industrial particles were mixed with urban aerosols, except for Fe, under more soluble forms in combustion particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamson, I. Y. R., Prieditis, H., Hedgecock, C., & Vincent, R. (2000). Zinc is the toxic factor in the lung response to an atmospheric particulate sample. Toxicology and Applied Pharmacology, 166, 111–119.

    Article  CAS  Google Scholar 

  • Adamson, I. Y. R., Prieditis, H., & Vincent, R. (1999). Pulmonary toxicity of an atmospheric particulate sample is due to the soluble fraction. Toxicology and Applied Pharmacology, 157, 43–50.

    Article  CAS  Google Scholar 

  • Alleman, L. Y., Lamaison, L., Perdrix, E., Robache, A., & Galloo, J.-C. (2010). PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmospheric Research, 96, 612–625.

    Article  CAS  Google Scholar 

  • Buseck, P. R., & Adachi, K. (2008). Nanoparticles in the atmosphere. Elements, 4, 389–394.

    Article  CAS  Google Scholar 

  • Caboche, J., Perdrix, E., Malet, B., & Alleman, L. Y. (2011). Development of an in vitro method to estimate lung bioaccessibility of metals from atmospheric particles. Journal of Environmental Monitoring, 13, 621–630.

    Article  Google Scholar 

  • Campen, M. J., Nolan, J. P., Schladweiler, M. C. J., Kodavanti, U. P., Evansky, P. A., Costa, D. L., & Watkinson, W. P. (2001). Cardiovascular and thermoregulatory effects of inhaled PM-associated transition metals: A potential interaction between nickel and vanadium sulfate. Toxicological Sciences, 64, 243–252.

    Article  CAS  Google Scholar 

  • Chapman, R. S., Watkinson, W. P., Dreher, K. L., & Costa, D. L. (1997). Ambient particulate matter and respiratory and cardiovascular illness in adults: Particle-borne transition metals and the heart–lung axis. Environmental Toxicology and Pharmacology, 4, 331–338.

    Article  CAS  Google Scholar 

  • Choël, M., Deboudt, K., Flament, P., Lecornet, G., Perdrix, E., & Sobansk, S. (2006). Fast evolution of tropospheric Pb- and Zn-rich particles in the vicinity of a lead smelter. Atmospheric Environment, 40, 4439–4449.

    Article  Google Scholar 

  • Costa, D. L., & Dreher, K. L. (1997). Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environmental Health Perspectives, 105, 1053–1060.

    Article  Google Scholar 

  • Damon, E. G., Eidson, A. F., Hahn, F. F., Griffith, W. C., & Guimette, R. A. (1984). Comparison of early lung clearance of yellowcake aerosols in rats with in vitro dissolution and IR analysis. Health Physics, 46, 859–866.

    Article  CAS  Google Scholar 

  • Delmas, R., Mégie, G., & Peuch, V.-H. (2005). Physique et chimie de l’atmosphère (p. 639). France: Edition-BERLIN.

    Google Scholar 

  • Denys, S., Tack, K., Caboche, J., & Delalain, P. (2006). Assessing metals bioaccessibility to man in human health risk assessment of contaminated sites. Difpolmine conference—Le Corum—Montpellier, p. 5.

  • Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., et al. (1993). An association between air pollution and mortality in six US cities. The New England Journal of Medicine, 329, 1753–1759.

    Article  CAS  Google Scholar 

  • Donaldson, K., Li, X. Y., & MacNee, W. (1998). Ultrafine (nanometre) particle mediated lung injury. Journal of Aerosol Science, 29, 553–560.

    Article  CAS  Google Scholar 

  • Donaldson, K., Tran, C. L., & MacNee, W. (2002). Deposition and effects of fine and ultrafine particles in the respiratory tract. European Respiratory Monograph, 21, 77–92.

    Google Scholar 

  • Dongarrà, G., Manno, E., & Varrica, D. (2009). Possible markers of traffic-related emissions. Environmental Monitoring and Assessment, 154, 117–125.

    Article  Google Scholar 

  • Dos Santos, M., Gómez, D., Dawidowski, L., Gautier, E., & Smichowski, P. (2009). Determination of water-soluble and insoluble compounds in size classified airborne particulate matter. Microchemical Journal, 9, 133–139.

    Article  Google Scholar 

  • Falta, T., Limbeck, A., Koellensperger, G., & Hann, S. (2008). Bioaccessibility of selected trace metals in urban PM 2.5 and PM 10 samples: A model study. Analytical and Bioanalytical Chemistry, 390, 1149–1157.

    Article  CAS  Google Scholar 

  • Feng, X. D., Dang, W. L., Huang, C., & Yang, C. (2009). Chemical speciation of fine particle bound trace metals. International Journal of Environmental Science and Technology, 6, 337–346.

    Article  CAS  Google Scholar 

  • Fernández-Espinosa, A. J. (1998). Especiacion quimica y fisica de metales en la materia particulada atmosférica: Aplicacion al estudio de la contaminacion ambiental de la ciudad de Sevilla. Doctoral Thesis. University of Seville. Spain.

  • Fernández-Espinosa, A. J., Rodrıguez, M. T., Barragan de la Rosa, F. J., & Jimenez Sanchez, J. C. (2002). A chemical speciation of trace metals for fine urban particles. Atmospheric Environment, 36, 773–780.

    Article  Google Scholar 

  • Fernandez-Espinosa, A. J., Ternero, M., Barragan, F. J., & Jimenez, J. C. (2000). An approach to characterization of sources of urban airborne particles through heavy metal speciation. Chemosphere-Global Change Science, 2, 123–136.

    Article  Google Scholar 

  • Gamble, J. L. (1942). Chemical anatomy, physiology, and pathology of extracellular fluid: A lecture syllabus (6th ed., p. 164). Cambridge, Massachusetts: Harvard University Press.

    Google Scholar 

  • Gao, Y., Nelson, E. D., Field, M. P., Ding, Q., Li, H., Sherrell, R. M., et al. (2002). Characterization of atmospheric trace elements on PM 2.5 particulate matter over the New York-New Jersey harbor estuary. Atmospheric Environment, 36, 1077–1086.

    Article  CAS  Google Scholar 

  • Heal, M. R., Hibbs, L. R., Agius, R. M., & Beverland, I. J. (2005). Total and water-soluble trace metal content of urban background PM10, PM2.5 and black smoke in Edinburgh, UK. Atmospheric Environment, 39, 1417–1430.

    Article  CAS  Google Scholar 

  • Jang, H.-N., Seo, Y.-C., Lee, J.-H., Hwang, K.-W., Yoo, J.-I., Sok, C.-H., & Kim, S.-H. (2007). Formation of fine particles enriched by V and Ni from heavy oil combustion: Anthropogenic sources and drop-tube furnace experiments. Atmospheric Environment, 41, 1053–1063.

    Article  CAS  Google Scholar 

  • Lowry, G. V., Espinasse, B. P., Badireddy, A. R., Richardson, C. J., Reinsch, B. C., Bryant, L. D., et al. (2012). Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environmental Science and Technology, 46, 7027–7036.

    Article  CAS  Google Scholar 

  • Marris, H., Deboudt, K., Augustin, P., Flament, P., Blond, F., Fiani, E., et al. (2012). Fast changes in chemical composition and size distribution of fine particles during the near-field transport of industrial plumes. Science of the Total Environment, 427, 126–138.

    Article  Google Scholar 

  • Marris, H., Deboudt, K., Flament, P., Grobéty, B., & Giere, R. (2013). Fe and Mn oxidation states by TEM-EELS in fine-particle emissions from a Fe−Mn alloy making plant. Environmental Science and Technology, 47, 10832–10840.

    Article  CAS  Google Scholar 

  • Mbengue, S., Alleman, L. Y., & Flament, P. (2014). Size-distributed metallic elements in submicronic and ultrafine atmospheric particles from urban and industrial areas in northern France. Atmospheric Research, 135, 35–47.

    Article  Google Scholar 

  • Midander, K., Pan, J., & Leygraf, C. (2006). Elaboration of a test method for the study of metal release from stainless steel particles in artificial biological media. Corrosion Science, 48, 2855–2866.

    Article  CAS  Google Scholar 

  • Molina, R. M., Schaider, L. A., Donaghey, T. C., Shine, J. P., & Brain, J. D. (2013). Mineralogy affects geoavailability, bioaccessibility and bioavailability of zinc. Environmental Pollution, 182, 217–224.

    Article  CAS  Google Scholar 

  • Mukhtar, A., & Limbeck, A. (2013). Recent developments in assessment of bio-accessible trace metal fractions in airborne particulate matter: A review. Analytica Chimica Acta, 774, 11–25.

    Article  CAS  Google Scholar 

  • Niu, J., Rasmussen, P. E., Hassan, N. M., & Vincent, R. (2010). Concentration distribution and bioaccessibilty of trace elements in nano and fine urban airborne particulate matter: Influence of particle size. Water Air Soil Pollution, 213, 211–235.

    Article  CAS  Google Scholar 

  • Ntziachristos, L., Ning, Z., Geller, M. D., Sheesley, R. J., Schauer, J. J., & Sioutas, C. (2007). Fine, ultrafine and nanoparticle trace element compositions near a major freeway with a high heavy-duty diesel fraction. Atmospheric Environment, 41, 5684–5696.

    Article  CAS  Google Scholar 

  • Oberdorster, G., Ferin, J., & Lehnert, B. E. (1994). Correlation between particle size, in vivo particle persistence, and lung injury. Environmental Health Perspectives, 102, 73–79.

    Article  Google Scholar 

  • Oomen, A. G., Brandon, E. F. A., Swartjes, F. A., & Sips, A. J. A. M. (2006). How can information on oral bioavailability improve human health risk assessment for lead-contaminated soils? Implementation and scientific basis. RIVM report 711701042, p. 108.

  • Pakkanen, T. A., Kerminen, V.-M., Korhonen, C. H., Hillamo, R. E., Aarnio, P. A., Koskentalo, T., & Maenhaut, W. (2001). Urban and rural ultrafine (PM 0.1) particles in the Helsinki area. Atmospheric Environment, 35, 4593–4607.

    Article  CAS  Google Scholar 

  • Pope, C. A, I. I. I., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: Lines that connect. Air & Waste Management Association, 56, 709–742.

    Article  CAS  Google Scholar 

  • Querol, X., Alastuey, A., Pey, J., Cusack, M., P´erez, N., Mihalopoulos, N., et al. (2009). Variability in regional background aerosols within the Mediterranean. Atmospheric Chemistry and Physics Discussion, 9, 4575–4591.

    Article  CAS  Google Scholar 

  • Rasmussen, P. E., Beauchemin, S., Maclean, L. C. W., Chenier, M., Levesque, C., & Gardner, D. H. (2014). Impact of humidity on speciation and bioaccessibility of Pb, Zn and Se in house dust. Journal of Analytical Atomic Spectrometry, 29, 1206–1217.

    Article  CAS  Google Scholar 

  • Reeder, R. J., & Schoonen, M. A. A. (2006). Metal speciation and its role in bioaccessibility and bioavailability. Reviews in Mineralogy and Geochemistry, 64, 55p.

    Article  Google Scholar 

  • Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30, 422–430.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., et al. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33, 3697–3705.

    Article  CAS  Google Scholar 

  • Samara, C., & Vousta, D. (2005). Size distribution of airborne particulate matter and associated heavy metals in the roadside environment. Chemosphere, 59, 1197–1206.

    Article  CAS  Google Scholar 

  • Sammut, M. L., Noack, Y., & Rose, J. (2006). Zinc speciation in steel plant atmospheric emissions: A multi-technical approach. Journal of Geochemical Exploration, 88, 239–242.

    Article  CAS  Google Scholar 

  • Sammut, M. L., Rose, J., Masion, A., Fiani, E., Depoux, M., Ziebel, A., et al. (2008). Determination of zinc speciation in basic oxygen furnace flying dust by chemical extractions and X-ray spectroscopy. Chemosphere, 70, 1945–1951.

    Article  CAS  Google Scholar 

  • Schauer, J. J., Lough, G. C., Shafer, M. M., Christensen, W. F., Arndt, M. F., DeMinter, J. T., & Park, J.-S. (2006). Characterization of metals emitted from motor vehicles. Health Effects Institute—Synopsis of Research Report, 133, 98p.

    Google Scholar 

  • Schaumann, F., Borm, P. J. A., Herbrich, A., Knoch, J., Pitz, M., Schins, Roel P. F., et al. (2004). Metal-rich ambient particles (particulate matter2.5) cause airway inflammation in healthy subjects. American Journal of Respiratory and Critical Care Medicine, 170, 898–903.

    Article  Google Scholar 

  • Schleicher, N. J., Norra, S., Chai, F., Chen, Y., Wang, S., Cen, K., et al. (2011). Temporal variability of trace metal mobility of urban particulate matter from Beijing—A contribution to health impact assessments of aerosols. Atmospheric Environment, 45, 7248–7265.

    Article  CAS  Google Scholar 

  • Sternbeck, J., Sjodin, A., & Andreasson, K. (2002). Metal emissions from road traffic and the influence of resuspension-results from two tunnel studies. Atmospheric Environment, 36, 4735–4744.

    Article  CAS  Google Scholar 

  • Takahashi, Y., Furukawa, T., Kanai, Y., Uematsu, M., Zheng, G., & Marcus, M. A. (2013). Seasonal changes in Fe species and soluble Fe concentration in the atmosphere in the Northwest Pacific region based on the analysis of aerosols collected in Tsukuba, Japan. Atmospheric Chemistry and Physics, 13, 7695–7710.

    Article  Google Scholar 

  • Talbot, C., Augustin, P., Leroy, C., Willart, V., Delbarre, H., & Khomenko, G. (2007). Impact of a sea breeze on the boundary-layer dynamics and the atmospheric stratification in a coastal area of the North Sea. Boundary-Layer Meteorology, 125, 133–154.

    Article  Google Scholar 

  • Templeton, D. M., Ariese, F., Cornelis, R., Danielsson, L. G., Muntau, H., Leeuwen, H. P. V., & Lobinski, R. (2000). Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC Recommendations 2000). Pure and Applied Chemistry, 72, 1453–1470.

    Article  CAS  Google Scholar 

  • Twining, J., McGlinn, P., Loi, E., Smith, K., & Giere, R. (2005). Risk ranking of bioaccessible metals from fly ash dissolved in simulated lung and gut fluids. Environmental Science and Technology, 39, 7749–7756.

    Article  CAS  Google Scholar 

  • Uzu, G., Sobanska, S., Aliouane, Y., Pradere, P., & Dumat, C. (2009). Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environmental Pollution, 157, 1178–1185.

    Article  CAS  Google Scholar 

  • Voutsa, D., & Samara, C. (2002). Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas. Atmospheric Environment, 36, 3583–3590.

    Article  CAS  Google Scholar 

  • Weckwerth, G. (2001). Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany). Atmospheric Environment, 35, 5525–5536.

    Article  CAS  Google Scholar 

  • Wiseman, C. L. S., & Zereini, F. (2014). Characterizing metal(loid) solubility in airborne PM 10, PM 2.5 and PM 1 in Frankfurt, Germany using simulated lung fluids. Atmospheric Environment, 89, 282–289.

    Article  CAS  Google Scholar 

  • Wu, Y.-S., Fang, G.-C., Lee, W.-J., Lee, J.-F., Chang, C.-C., & Lee, C.-Z. (2007). A review of atmospheric fine particulate matter and its associated trace metal pollutants in Asian countries during the period 1995–2005. Journal of Hazardous Materials, 143, 511–515.

    Article  CAS  Google Scholar 

  • Zhang, H. Z., Gilbert, B., Huang, F., & Banfield, J. F. (2003). Water-driven structure transformation in nanoparticles at room temperature. Nature, 424, 1025–1029.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the French Agency of Environment and Energy Management (ADEME grant #1181C0089). Mines Douai and the LPCA participate in the Institut de Recherche en ENvironnement Industriel (IRENI), which is financed by the Communauté Urbaine de Dunkerque, the Nord-Pas de Calais Regional Council, the French Ministry of Higher Education and Research, the CNRS and the European Regional Development Fund (ERDF) and in the CaPPA (Chemical and Physical Properties of the Atmosphere) project (ANR-10-LABX-005) funded by the French National Research Agency (ANR) through the PIA (Programme d’Investissement d’Avenir). S.M. is grateful for a Ph.D. scholarship from Mines Douai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saliou Mbengue.

Ethics declarations

Conflict of interest

The authors declare to have no conflict of interest with any financial organization regarding the material discussed in the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbengue, S., Alleman, L.Y. & Flament, P. Bioaccessibility of trace elements in fine and ultrafine atmospheric particles in an industrial environment. Environ Geochem Health 37, 875–889 (2015). https://doi.org/10.1007/s10653-015-9756-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9756-2

Keywords

Navigation