Skip to main content
Log in

Solid-state UV-MALDI mass spectrometric quantitation of fluroxypyr and triclopyr in soil

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

An Erratum to this article was published on 29 December 2015

Abstract

The work presented here refers firstly to solid-state UV-MALDI–Orbitrap-mass spectrometric analysis of fluroxypyr (A) and triclopyr (B) in soils under laboratory conditions. The experimental design has involved the following: (a) determination of analytes A and B in polycrystalline composites of organic materials 17, based on 2-piperidine (pyrrolidine or piperazine)-1-yl-ethyl ammonium salts in order to determine the effect of sample preparation techniques on method performance using commercial herbicide formulations and (b) analysis of non-(X i j,k,l ) and sterilized (Y i j,k,l ) soil samples (i—fold rate 1, 10, 100, or 1,000; j—pesticide type A or B; k—time (0, 5, 10, 20, and 50 days) and l = 1–3 replicated samples) having clay content ∈ 5.0–12.0 %, silt ∈ 23.0–51.1 %, sand ∈ 7.2–72.0 %, and pH ∈ 4.0–8.1. In order to obtain a high representativeness of the data toward real-field experiments, the pollution scheme has involved 1-, 10-, 100-, and 1,000-fold rates. The firstfold rate has concentration of pollutant A of 2.639 × 10−4 g in 625 cm2 soil horizon of 0–25 cm2 (5 cm depth) according to registration report (PSM-Zulassungbericht) of German Federal Office of Consumer Protection and Food Safety (Bundesamt für Verbraucherschutz und Lebensmittelsicherheit) 6337/26.10.2009. The experimental design has involved quincunx systematic statistical approach for collection of soil samples. The performance has been compared with the corresponding statistical variable obtained, using an independent HPLC–ESI–(APCI–)–MS/MS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APCI:

Atmospheric pressure chemical ionization

ANOVA:

Analysis of variance

CP:

Crystalline phase

CIS:

Configuration interaction singles (quantum chemical method)

CT:

Charge transfer (effect)

DFT:

Density functional theory

DLLME:

Dispersive liquid–liquid microextraction

ESI:

Electrospray ionization (mass spectrometry)

Fs:

Fluorescence (detection)

GP:

Gas phase

GC–ECD:

Gas chromatography with electron capture detection

HPLC:

High-performance liquid chromatography

LP:

Liquid phase

LMW:

Low-molecular-weight analytes

HF-LDME:

Hollow fiber-based liquid-phase microextraction

HMBC:

(Heteronuclear) multibond correlation spectroscopy (NMR processing mode)

HPLC:

High-performance liquid chromatography

HSQC:

Heteronuclear single-quantum coherence (NMR processing mode)

LLE:

Liquid–liquid extraction

LODs:

(Concentration) limit of detection

LOQs:

(Concentration) limit of quantitation

LPME:

Liquid-phase microextraction

M06-2X:

Meta-hybrid GGA quantum chemical method (functional)

MALDI:

Matrix-assisted laser desorption/ionization (mass spectrometry)

MS:

Mass spectrometry

MS/MS:

Tandem operation mode (mass spectrometry)

MLR:

Multiple linear regression

NBO:

Natural bond orbital (analysis)

NMR:

Nuclear magnetic resonance

PCM:

Polarizable continuum model (quantum chemical method)

PT:

Proton transfer (effect)

RT:

Retention time

SPE:

Solid-phase extraction

SPME:

Solid-phase microextraction

SDME:

Single-drop liquid-phase microextraction

TD:

Time-dependent Hartree–Fock (quantum chemical method)

TD-DFT:

Time-dependent density functional (quantum chemical method)

UCC:

Unit cell content

UFLC:

Ultra-fast liquid chromatography

UV:

Ultraviolet (irradiation)

References

  • Ahmadi, F., Assadi, Y., Hosseini, S., & Rezaee, M. (2006). Determination of organophosphorus pesticides in water samples by single drop microextraction and gas chromatography-flame photometric detector. Journal of Chromatography A, 1101, 307–312.

    Article  CAS  Google Scholar 

  • Arge, R., & Knof, H. (1976). A comparison of negative and positive ion mass spectrometry. Organic Mass Spectrometry, 11, 582–598.

    Article  Google Scholar 

  • Badía-Villas, D., Gonzalez-Perez, J., Aznar, J., Arjona-Gracia, B., & Marti-Dalmau, C. (2014). Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: Soil depth affected by fire. Geoderma, 213, 400–407.

    Article  Google Scholar 

  • Bahadir, M., Parlar, H., & Spiteller, M. (Hers.). (2004) Springer Umweltlexikon. Springer, Berlin, Heidelberg, 2 Auflage, pp 1–1457.

  • Berry, K., Hankin, J., Barkley, R., Spraggins, J., Caprioli, R., & Murphy, R. (2011). MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chemical Reviews, 111, 6491–6512.

    Article  Google Scholar 

  • Blessing, B. (1995). An empirical correction for absorption anisotropy. Acta Crystallographica, A51, 33–38.

    Article  CAS  Google Scholar 

  • Brosnan, J., & Breeden, G. (2013). Bermudagrass (cynodon dactylon) control with topramezone and triclopyr. Weed Technology, 27, 138–142.

    Article  CAS  Google Scholar 

  • Busch, K., Glish, G., & McLuckey, S. (1988). Mass spectrometry/mass spectrometry: Techniques and application of Tandem Mass Spectrometry (pp. 1–333). New York: VCH Publisher Inc.

    Google Scholar 

  • Butz, S., & Stan, H. (1995). Screening of 265 pesticides in water by thin-layer chromatography with automated multiple development. Analytical Chemistry, 67, 620–630.

    Article  CAS  Google Scholar 

  • Cederlund, H., Borjesson, E., Jonsson, E., & Thierfelder, T. (2012). Degradation and leaching of fluroxypyr after application to railway tracks. Journal of Environment Quality, 41, 1884–1892.

    Article  CAS  Google Scholar 

  • Cole, R. (Ed.). (1997). Electrospray ionization mass spectrometry (pp. 1–577). New York: Wiley.

    Google Scholar 

  • Cole, R. (Ed.). (2010). Electrospray and MALDI mass spectrometry (2nd ed., pp. 1–847). Hoboken, New Jersey: Wiley.

    Google Scholar 

  • Commission Regulation EU 600/2010, Official J. European Union (9.7.2010), L 174/18.

  • Commission Regulation EU, Amtsblatt der Europäischen Union, L 195/37, 27.07.2011 (736/2011, 26.07.2011).

  • Crawford, D. (2006). Ab initio calculation of molecular chiroptical properties. Theoretical Chemistry Accounts, 115, 227–245.

    Article  CAS  Google Scholar 

  • Dalton2011 Program Package. http://www.daltonprogram.org/download.html

  • De Proft, F., & Geerlings, P. (2001). Conceptual and computational DFT in the study of aromaticity. Chemical Reviews, 101, 1451–1464.

    Article  Google Scholar 

  • Fischer, P., Burhenne, J., Bach, M., Spiteller, M., & Frede, H. (1988). Diffuse Einträge von Pflanzenschutzmitteln in ein kleines Fließgewässer (Non-point contamination of small watershed by pesticides. Nachrichtenbl. Deut. Pflanzenschutzd., 50, 204–208.

    Google Scholar 

  • Fox, A., Haller, W., Getsinger, K., & Petty, D. (2002). Dissipation of triclopyr herbicide applied in Lake Minnetonka, MN concurrently with Rhodamine WT dye. Pest Management Science, 7, 677–686.

    Article  Google Scholar 

  • Frisch, M. (2009). Gaussian 09. Pittsburgh, PA: Gaussian Inc.

    Google Scholar 

  • Gao, J., Maguhn, J., Spityauer, P., & Kettrup, A. (1998). Sorption of pesticides in the sediment of the teufelsweiher Poud (Southern Germany). I: Equilibrium assesment, effect of organic carbon content and pH. Water Research, 32, 1662–1672.

    Article  CAS  Google Scholar 

  • Garcia-Reyes, J., Gilbert-Lopez, B., & Molina-Diaz, A. (2008). Determination of pesticide residues in fruit-based soft drinks. Analytical Chemistry, 80, 8966–8974.

    Article  CAS  Google Scholar 

  • Grimme, S., Bahlmann, A., & Haufe, G. (2002). Ab initio calculations for the optical rotations of conformationally flexible molecules: A case study on six, seven-, and eight-membered fluorinated cycloalkanol esters. Chirality, 14, 793–797.

    Article  CAS  Google Scholar 

  • Grimme, S., & Neese, F. (2007). Double-hybrid density functional theory for excited electronic states of molecules. Journal of Chemistry and Physical, 127, 154116.

    Article  Google Scholar 

  • Gross, J. (2011). Mass Spectrometry, a textbook (2nd ed., pp. 1–753). Berlin: Springer.

    Book  Google Scholar 

  • Gu, J., Leszczynski, J., & Schaefer, H, I. I. I. (2012). Interactions of electrons with bare and hydrated biomolecules: From nucleic acid bases to DNA segments. Chemical Reviews, 112, 5603–5640.

    Article  CAS  Google Scholar 

  • Guschev, A., Wilkinson, W., Proctor, A., & Hercules, D. (1995). Improvement of signal reproducibility and matrix/comatrix effects in MALDI analysis. Analytical Chemistry, 67, 1034–1041.

    Article  Google Scholar 

  • Hartmann, H., Burhenne, J., Mueller, K., Frede, H., & Spiteller, M. (2000). Rapid target analysis of pesticides in water by online coated capillary microextraction combined with liquid chromatography and tandem mass spectrometry. Journal of AOAC International, 83, 762–770.

    CAS  Google Scholar 

  • Heider, K., Spiteller, M., Dec, J., & Schaeffer, A. (2000). Silylation of soil organic matter. Extraction of humic compounds and soil bound residues. In J. Bollag & G. Stotzky (Eds.), Soil Biochemistry (Vol. 10, pp. 139–170). New York: Dekker.

    Google Scholar 

  • Heilmann, B., Lebuhn, M., & Beese, F. (1995). Methods for the investigation of metabolic activities and shifts in the microbial community in a soil treated with a fungicide. Biology and Fertility of Soils, 19, 186–192.

    Article  CAS  Google Scholar 

  • Hu, J., Wang, T., Long, J., & Chen, Y. (2013). Hydrolysis, aqueous photolysis and soil degradation of fluroxypyr. International Journal of Environmental Analytical Chemistry,. doi:10.1080/03067319.2013.803283.

    Google Scholar 

  • Ivanova, B., & Spiteller, M. (2010a). Conformations and properties of the L-tryptophyl-containing peptides in solution, depending on the pH-theoretical study vs. experiments. Biopolymers, 93, 727–734.

    CAS  Google Scholar 

  • Ivanova, B., & Spiteller, M. (2010b). Noncentrosymmetric crystals with marked nonlinear optical properties. Journal of Physical Chemistry A, 114, 5099–5103.

    Article  CAS  Google Scholar 

  • Ivanova, B., & Spiteller, M. (2012a). A quantitative solid-state Raman spectroscopic method for control of fungicides. Analyst, 137, 3355–3364.

    Article  CAS  Google Scholar 

  • Ivanova, B., & Spiteller, M. (2012b). Matrixes in UV-MALDI mass spectrometry—crystals of organic salts versus co-crystals of neutral polyfunctional carboxylic acids. Analytical Methods, 4, 2247–2253.

    Article  CAS  Google Scholar 

  • Ivanova, B., & Spiteller, M. (2012c). Matrix-assisted laser desorption/ionization mass spectrometric analysis of herbicides in dication-containing organic crystals. Analytical Methods, 4, 4360–4367.

    Article  CAS  Google Scholar 

  • Ivanova, B., & Spiteller, M. (2013). Heptachlorepoxides: Theoretical versus experimental study of the embedded samples in the matrixes of organic crystals. Journal of Inclusion Phenomena and Macrocyclic,. doi:10.1007/s10847-012-0213x.

    Google Scholar 

  • Karas, M., & Krueger, R. (2003). Ion formation in MALDI: The cluster ionization mechanism. Chemical Reviews, 103, 427–440.

    Article  CAS  Google Scholar 

  • Kelley C. (1999) Iterative methods for optimization, SIAM Frontiers in Applied Mathematics, 18.

  • Klaus, F., Pfeifer, T., & Spiteller, M. (2000). APCI-MS/MS: A powerful tool for the analysis of bound residues resulting from the interaction pesticides with DOM and humic substances. Environmental Science and Technology Letters, 34, 3514–3520.

    Article  CAS  Google Scholar 

  • Knochenmuss, R., & Zenobi, R. (2003). MALDI ionization: the role of in-plume processes. Chemical Reviews, 103, 441–452.

    Article  CAS  Google Scholar 

  • Kusari, S., Tatsimo, S., Zuehlke, S., Talontsi, F., Kouam, S., & Spiteller, M. (2014). Tramadol–A true natural product? Angew. Chem. Int. Ed., 53, 12073–12076.

    Article  CAS  Google Scholar 

  • Lamshoeft, M., Storp, J., Ivanova, B., & Spiteller, M. (2011). Gas–phase CT-stabilized Ag(I) and Zn(II) metal–organic complexes–experimental versus theoretical study. Polyhedron, 30, 2564–2573.

    Article  CAS  Google Scholar 

  • Lazartigues, A., Fratta, C., Baudot, R., Wiest, L., Feidt, C., Thomas, M., & Cren-Olive, C. (2011). Multiresidue method for the determination of 13 pesticides in three environmental matrices: Water, sediments and fish muscle. Talanta, 85, 1500–1507.

    Article  CAS  Google Scholar 

  • Madsen, K., Nielsen, H., & Tingleff, O. (2004). Informatics and mathematical modelling (2nd ed.). Delhi: DTU Press.

    Google Scholar 

  • Mennucci, B., Tomasi, J., Cammi, R., Cheeseman, J., Frisch, M., Devlin, F., et al. (2002). Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules. Journal of Physical Chemistry A, 106, 6102–6113.

    Article  CAS  Google Scholar 

  • Moreno-Castilla, C., Lopez-Ramon, M., Pastrana–Martínez, L., Alvarez-Merino, M., & Fontecha-Camara, M. (2012). Competitive adsorption of the herbicide fluroxypyr and tannic acid from distilled and tap water on activated carbons and their thermal desorption. Adsorption, 18, 173–179.

    Article  CAS  Google Scholar 

  • Nebbioso, A., Piccolo, A., & Spiteller, M. (2010). Limitations of electrospray ionization in the analysis of a heterogeneous mixture of naturally occurring hydrophilic and hydrophobic compounds. Rapid Communications in Mass Spectrometry, 24, 3163–3170.

    Article  CAS  Google Scholar 

  • Norris, J., & Caprioli, R. (2013). Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chemical Reviews, 113, 2309–2342.

    Article  CAS  Google Scholar 

  • Patents: Dow AgroSciences LLC, Patent US2009/62121 A1 (2009); US2008/207452 A1 (2008); WO2012/5743 A1 (2012); (b) BASF SE, WO2011/069890 A2 (2011).

  • Pedersen-Bjergaard, S., & Rasmussen, K. (1999). Liquid–liquid–liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Analytical Chemistry, 71, 2650–2656.

    Article  CAS  Google Scholar 

  • Perez-Bendito, D., & Rubio, S. (1999). Environmental analytical chemistry. In S. Weber (Ed.), Comprehensive analytical chemistry (pp. 1–842). XXXII: Elsevier.

    Google Scholar 

  • Piccolo, A. (2002). The supramolecular structure of humic substances: A novel understanding of the humus chemistry and applications in soul science. Advances in Agronomy, 75, 57–134.

    Article  CAS  Google Scholar 

  • Piccolo, A., Spiteller, M., & Nebbioso, A. (2010). Effects of sample properties and mass spectroscopic parameters on electrospray ionization mass spectra of size-fractions from a soil humic acid. Analytical and Bioanalytical Chemistry, 397, 3071–3078.

    Article  CAS  Google Scholar 

  • Pires, L., Prandel, L., & Saab, S. (2014). The effect of wetting and drying cycles on soil chemical composition and their impact on bulk density evaluation: An analysis by using XCOMdata and gamma-ray computed tomography. Geoderma, 213, 512–520.

    Article  CAS  Google Scholar 

  • PSM–Zulassungbericht von Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, 006337/00–00 (26.10.2009).

  • Reed, T., & McCullough, P. (2012). Application timing of aminocyclopyrachlor, fluroxypyr, and triclopyr influences Swinecress control in tall fescue. HortScience, 47, 1548–1549.

    CAS  Google Scholar 

  • Sheldrick, G. M. (1990). Phase annealing in SHELX-90: Direct methods for larger structures. Acta Crystallographica, A46, 467–473.

    Article  CAS  Google Scholar 

  • Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica, A64, 112–122.

    Article  Google Scholar 

  • Sheldrick, G. M. (2010). Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallographica, D66, 479–485.

    Google Scholar 

  • Shen, G., & Hian, K. (2002). Hollow fiber-protected liquid-phase microextraction of triazine herbicides. Analytical Chemistry, 74, 648–654.

    Article  CAS  Google Scholar 

  • Skibinski, R. (2012). A study of photodegradation of quetiapine by the use of LC-MS/MS method. Central European Journal of Chemistry, 10, 232–240.

    Article  CAS  Google Scholar 

  • Spek, A. (2003). Single-crystal structure validation with the program PLATON. Journal of Applied Crystallography, 36, 7–13.

    Article  CAS  Google Scholar 

  • Spiteller, M. (1985). Extraction of soil organic matter by supercritical fluids. Organic Geochemistry, 8, 111–113.

    Article  Google Scholar 

  • Totsche, K., Rennert, T., Gerzabek, M., Koegel-Knabner, I., Smalla, K., Spiteller, M., & Vogel, H. (2010). Biogeochemical interfaces in soil: The interdisciplinary challenge for soil, science. Journal of Plant Nutrition and Soil Science, 173, 88–99.

    Article  CAS  Google Scholar 

  • Trevisan, S., Francioso, O., Quaggiotti, S., & Nardi, S. (2010). Humic substances biological activity at the plant-soil interface. Plant Signaling and Behaviour, 5(6), 635–643.

    Article  CAS  Google Scholar 

  • Vereecken, H., Vanderborght, J., Kasteel, R., Spiteller, M., Schaeffer, M., & Close, M. (2011). Do Lab-derived distribution coefficient values of pesticides match distribution coefficient values determined from column and field-scale experiments? A critical analysis of relevant literature. Journal of Environmental Quality, 40, 879–898.

    Article  CAS  Google Scholar 

  • Wang, L., Xu, J., Zhao, P., & Pan, C. (2011). Dissipation and residues of fluroxypyrmeptyl in rice and environment. Bulletin of Environmental Contamination and Toxicology, 86, 449–453.

    Article  CAS  Google Scholar 

  • Zang, X., Wang, J., Wang, O., Wang, M., Ma, J., Xi, G., & Wang, Z. (2008). Analysis of captan, folpet, and captafol in apples by dispersive liquid-liquid microextraction combined with gas chromatography. Analytical and Bioanalytical Chemistry, 392, 749–754.

    Article  CAS  Google Scholar 

  • Zhao, Y., & Truhlar, D. (2008a). Density functionals with broad applicability in chemistry. Accounts of Chemical Research, 41, 157–167.

    Article  CAS  Google Scholar 

  • Zhao, Y., & Truhlar, D. (2008b). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06–class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120, 215–241.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Deutscher Akademischer Austausch Dienst, Deutsche Forschungsgemeinschaft, Central Instrumental Laboratories for Structural Analysis at Dortmund University (Federal State Nordrhein–Westfalen, Germany) and analytical and computational laboratory clusters at the Institute of Environmental Research at the same University.

Conflict of interests

Michael Spiteller has received research grants (Deutsche Forschungsgemeinschaft, 255/21–1, 255/22–1 and 1315); Bojidarka Ivanova has received research grants (Deutsche Forschungsgemeinschaft, 255/22-1, Alexander von Humboldt Foundation, research fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojidarka Ivanova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1598 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, B., Spiteller, M. Solid-state UV-MALDI mass spectrometric quantitation of fluroxypyr and triclopyr in soil. Environ Geochem Health 37, 557–574 (2015). https://doi.org/10.1007/s10653-014-9673-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-014-9673-9

Keywords

Navigation