Skip to main content
Log in

Screening of Cucumis sativus as a new arsenic-accumulating plant and its arsenic accumulation in hydroponic culture

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Phytoextraction is a remediation technology with a promising application for removing arsenic (As) from soils and waters. Several plant species were evaluated for their As accumulation capacity in hydroponic culture amended with As. Cucumis sativus (cucumber) displayed the highest tolerance against As among 4 plants tested in this study (corn, wheat, sorghum and cucumber). The germination ratio of Cucumis sativus was more than 50% at the high concentration of 5,000 mg-As/l. In Cucumis sativus grown in a solution contaminated with 25 mg-As/l, the accumulated As concentrations in the shoot and root were 675.5 ± 11.5 and 312.0 ± 163.4 mg/kg, respectively, and the corresponding values of the translocation and bioaccumulation factors for As were 1.9 ± 0.9 and 21.1 ± 8.4, respectively. These results indicate Cucumis sativus is to be a candidate plant for phytoextraction of As from soils and water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An, Y. J. (2004). Soil ecotoxicity assessment using cadmium sensitive plant. Environmental Pollution, 127, 21–26.

    Article  CAS  Google Scholar 

  • Burló, F., Guijarro, I., Carbonell-Barrachina, A. A., Valero, D., & Martinez-Sánchez, F. (1999). Arsenic species: effects on and accumulation by tomato plants. Journal of Agricultural Food and Chemistry, 47, 1247–1253.

    Article  Google Scholar 

  • Carbonell-Barrachina, A. A., Aarabi, M. A., DeLaune, R. D., Gambrell, R. P., & Patrick, W. H. (1998). The influence of arsenic chemical form and concentration on Spartina patens and Spartina alterniflora growth and tissue arsenic concentration. Plant and Soil, 198, 33–43.

    Article  CAS  Google Scholar 

  • Chintakovid, W., Visoottiviseth, P., Khokiattiwong, S., & Lauengsuchonkul, S. (2008). Potential of the hybrid marigolds for arsenic phytoremediation and income generation of remediators in Ron Phibun District, Thailand. Chemosphere, 70, 1532–1537.

    Article  CAS  Google Scholar 

  • Chopra, B. K., Bhat, S., Mikheenko, I. P., Xu, Z., Yang, Y., Luo, X., et al. (2007). The characteristics of rhizosphere microbes associated with plants in arsenic-contaminated soils from cattle dip sites. Science of the Total Environment, 378, 331–342.

    Article  CAS  Google Scholar 

  • Fayiga, A. O., Ma, L. Q., Santoa, J., Rathinasabapathi, B., Stamps, B., & Littell, R. C. (2005). Effects of arsenic species and concentrations on arsenic accumulation by different fern species in a hydroponic system. International Journal of Phytoremediation, 7, 231–240.

    Article  CAS  Google Scholar 

  • Fitz, W. J., & Wenzel, W. W. (2002). Arsenic transformations in the soil-rhizosphere plant system: Fundamentals and potential application to phytoremediation. Journal of Biotechnology, 99, 259–278.

    Article  CAS  Google Scholar 

  • Francesconi, K. A., & Kuehnelt, D. (2002). Arsenic compound in the environment. In W. T. Frankenberger Jr (Ed.), Environmental chemistry of arsenic (pp. 51–94). New York: Marcel Dekker.

    Google Scholar 

  • Francesconi, K., Visoottiviseth, P., Sridokchan, W., & Goessler, W. (2002). Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos, a potential phytoremediator of arsenic-contaminated soils. Science of the Total Environment, 284, 27–35.

    Article  CAS  Google Scholar 

  • Gisbert, C., Almela, C., Vélez, D., López-Moya, J. R., Haro, A., Serrano, R., et al. (2008). Identification of as accumulation plant species growing on highly contaminated soils. International Journal of Phytoremediation, 10, 185–196.

    Article  CAS  Google Scholar 

  • Haque, N., Peralta-Videa, J. R., Jones, G. L., Gill, T. E., & Gardea-Torresdey, J. L. (2007). Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA. Environmental Pollution, 153, 362–368.

    Article  Google Scholar 

  • Kertulis-Tartar, G. M., Ma, L. Q., Tu, C., & Chirenje, T. (2006). Phytoremediation of an arsenic-contaminated site using Pteris vittata: A two-year study. International Journal of Phytoremediationion, 8, 311–322.

    Article  CAS  Google Scholar 

  • Ma, L. Q., Komar, K. M., Zhang, W., Cai, Y., & Kennelley, E. D. (2001). A fern that hyper accumulates arsenic. Nature, 409, 579.

    Article  CAS  Google Scholar 

  • Ma, J. F., Yamaji, N., Mitani, N., Xu, X. Y., Su, Y. H., McGrath, S. P., et al. (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences, USA, 105, 9931–9935.

    Article  CAS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic around the world: A review. Talanta, 58, 201–235.

    Article  CAS  Google Scholar 

  • Marin, A. R., Masscheleyn, P. H., & Patrick, W. H. (1992). The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant and Soil, 139, 175–183.

    Article  CAS  Google Scholar 

  • Marques, A. P. G. C., Moreira, H., Rangel, A. O. S. S., & Castro, P. M. L. (2008). Arsenic, lead and nickel accumulation in Rubus ulmifolius growing in contaminated soil in Portugal. Journal of Hazardous Materials, 165, 174–179.

    Article  Google Scholar 

  • McGrath, S. P., Chaudri, A. M., & Giller, K. E. (1995). Long-term effects of metals in sewage sludge on soils, microorganisms and plants. Journal of Industrial Microbiology & Biotechnology, 14, 94–104.

    CAS  Google Scholar 

  • Meharg, A. A., & Hartley-Whitaker, J. (2002). Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist, 154, 29–43.

    Article  CAS  Google Scholar 

  • Melo, E. E. C., Costa, E. T. S., Guilhermea, L. R. G., Faquina, V., & Nascimentob, C. W. A. (2009). Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. Journal of Hazardous Materials, 168, 479–483.

    Article  CAS  Google Scholar 

  • Mihucz, V. G., Tatar, E., Virag, I., Cseh, E., Fodor, F., & Zaray, G. (2005). Arsenic speciation in xylem sap of cucumber (Cucumis sativus L.). Analytical and Bioanalytical Chemistry, 383, 461–466.

    Article  CAS  Google Scholar 

  • Pickering, I. J., Prince, R. C., George, M. J., Smith, R. D., George, G. N., & Salt, D. E. (2000). Reduction and coordination of arsenic in Indian mustard. Plant Physiology, 122, 1171–1177.

    Article  CAS  Google Scholar 

  • Rahman, M. A., Hasegawa, H., Ueda, K., Maki, O. C., & Rahman, M. M. (2007). Arsenic accumulation in duckweed (Spirodela polyrhiza L.): A good option for phytoremediation. Chemosphere, 69, 493–499.

    Article  CAS  Google Scholar 

  • Rajkumar, M., Nagendran, R., Lee, K. J., Lee, W. H., & Kim, S. Z. (2005). Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere, 62, 741–748.

    Article  Google Scholar 

  • Robinson, B., Kim, N., Marchetti, M., Moni, C., Schroeter, L., Dijssel, C. V. D., et al. (2006). Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environmental and Experimental Botany, 58, 206–215.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30, 422–430.

    Article  CAS  Google Scholar 

  • Sracek, O., Bhattacharya, P., Jacks, G., Gustafsson, J. P., & von Bromeesn, M. (2004). Behavior of arsenic and geochemical modeling of arsenic enrichment in aqueous environments. Applied Geochemistry, 19, 169–180.

    Article  CAS  Google Scholar 

  • Su, Y. H., McGrath, S. P., Zhu, Y. G., & Zhao, F. J. (2008). Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata. New Phytologist, 180, 434–441.

    Article  CAS  Google Scholar 

  • Sun, Y., Zhou, Q., & Diao, C. (2008). Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresource Technology, 99, 1103–1110.

    Article  CAS  Google Scholar 

  • Tu, S., Ma, L. Q., & Bondada, B. (2002). Arsenic accumulation in the hyperaccumulator Chinese Brake and its utilisation potential for phytoremediation. Journal of Environmental Quality, 31, 1671–1675.

    Article  CAS  Google Scholar 

  • Tu, C., Ma, L. Q., & Luongo, T. (2004). Root exudates and arsenic accumulation in arsenic hyperaccumulating Pteris vittata and non-hyperaccumulating Nephrolepis exaltata. Plant and Soil, 258, 9–19.

    Article  CAS  Google Scholar 

  • Wei, C. Y., Wang, C., & Sun, X. (2007). Arsenic accumulation by ferns: A field survey in southern china. Environmental Geochemistry and Health, 29, 169–177.

    Article  CAS  Google Scholar 

  • Xu, X. Y., McGrath, S. P., Meharg, A., & Zhao, F. J. (2007). Growing rice aerobically markedly decreases arsenic accumulation. Environmental Science and Technology, 42, 5574–5579.

    Article  Google Scholar 

  • Zabłudowska, E., Kowalska, J., Jedynak, L., Wojas, S., Skłodowska, A., & Antosiewicz, D. M. (2009). Search for a plant for phytoremediation–What can we learn from field and hydroponic studies? Chemosphere, 77, 301–307.

    Article  Google Scholar 

  • Zhao, R., Zhao, M., Wang, H., Taneike, Y., & Zhang, X. (2006). Arsenic speciation in moso bamboo shoot–a terrestrial plant that contains organoarsenic species. Science of the Total Environment, 371, 293–303.

    Article  CAS  Google Scholar 

  • Zhao, F. J., Ma, J. F., Meharg, A. A., & McGrath, S. P. (2009). Arsenic uptake and metabolism in plants. New Phytologist, 181, 777–794.

    Article  CAS  Google Scholar 

  • Zhu, Y. G., & Rosen, B. P. (2009). Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: From imagination to reality? Current Opinion in Biotechnology, 20, 220–224.

    Article  CAS  Google Scholar 

  • Zhu, Y. G., Williams, P. N., & Meharg, A. A. (2008). Exposure to inorganic arsenic from rice: A global issue. Environmental Pollution, 154, 169–171.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (KRF-2008-C00388). Sun Ah Choi was financially supported through NRL program (R0A-2008-000-20044-0) by the NRF, MEST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Suk Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S.H., Choi, S.A., Yoon, H. et al. Screening of Cucumis sativus as a new arsenic-accumulating plant and its arsenic accumulation in hydroponic culture. Environ Geochem Health 33 (Suppl 1), 143–149 (2011). https://doi.org/10.1007/s10653-010-9350-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-010-9350-6

Keywords

Navigation