Skip to main content

Advertisement

Log in

Assessment of bioaccessibility and exposure risk of arsenic and lead in urban soils of Guangzhou City, China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Soil ingestion is an important human exposure pathway of heavy metals in urban environments with heavy metal contaminated soils. This study aims to assess potential health risks of heavy metals in soils sampled from an urban environment where high frequency of human exposure may be present. A bioaccessibility test is used, which is an in vitro gastrointestinal (IVG) test of soluble metals under simulated physiological conditions of the human digestion system. Soil samples for assessing the oral bioaccessibility of arsenic (As) and lead (Pb) were collected from a diverse range of different land uses, including urban parks, roadsides, industrial sites and residential areas in Guangzhou City, China. The soil samples contained a wide range of total As (10.2 to 61.0 mg kg−1) and Pb (38.4 to 348 mg kg−1) concentrations. The bioaccessibility of As and Pb in the soil samples were 11.3 and 39.1% in the stomach phase, and 1.9 and 6.9% in the intestinal phase, respectively. The As and Pb bioaccessibility in the small intestinal phase was significantly lower than those in the gastric phase. Arsenic bioaccessibility was closely influenced by soil pH and organic matter content (r 2 = 0.451, p < 0.01) in the stomach phase, and by organic matter, silt and total As contents (r 2 = 0.604, p < 0.001) in the intestinal phase. The general risk of As and Pb intake for children from incidental ingestion of soils is low, compared to their maximum doses, without causing negative human health effects. The exposure risk of Pb in the soils ranked in the order of: industrial area/urban parks > residential area/road side. Although the risk of heavy metal exposure from direct ingestion of urban soils is relatively low, the risk of inhalation of fine soil particulates in the air remains to be evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (ATSDR). (2008). Minimal risk levels. http://www.atsdr.cdc.gov/mrls/. Accessed 25 May 2010.

  • Basta, N. T., Rodriguez, R. R., & Casteel, S. W. (2001). Bioavailability and risk of arsenic exposure by the soil ingestion pathway. In W. T. Frankenberger (Ed.), Environmental chemistry of arsenic (pp. 117–139). New York: Marcel Decker Inc.

    Google Scholar 

  • Biasioli, M., Barberis, R., & Ajmone-Marsan, F. (2006). The influence of a large city on some soil properties and metals content. Science of the Total Environment, 356, 154–164.

    Article  CAS  Google Scholar 

  • Calabrese, E. J., Stanek, E. J., James, R. C., & Roberts, S. M. (1997). Soil ingestion: A concern for acute toxicity in children. Environmental Health Perspectives, 105, 1354–1358.

    Article  CAS  Google Scholar 

  • Carrizales, L., Razo, I., Téllez-Hernández, J. I., Torres-Nerio, R., Torres, A., Batres, L. E., et al. (2006). Exposure to arsenic and lead of children living near a copper-smelter in San Luis Potosi, Mexico: Importance of soil contamination for exposure of children. Environmental Research, 101, 1–10.

    Article  CAS  Google Scholar 

  • Cave, M. L., Wragg, J., Palumbo, B., & Klinck, B. A. (2003). Measurement of the bioaccessibility of arsenic in UK soil. R & D Technical Report P5–062/TR02. Bristol: Environmental Agency.

    Google Scholar 

  • FAO/WHO. (1993). Evaluation of certain food additives and contaminants. 41st Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series; 837, Geneva, Switzerland.

  • Gee, G. W., & Bauder, J. W. (1986). Particle size analysis. In A. Klute (Ed.), Methods of soil analysis: Part 1. Physical and mineralogical methods (pp. 383–411). Madison, WI: American Society of Agronomy.

    Google Scholar 

  • Hemond, H. F., & Solo-Gabriele, H. M. (2004). Children’s exposure to arsenic from CCA-treated wooden decks and playground structures. Risk Analysis, 24, 51–64.

    Article  Google Scholar 

  • Johnson, D. L., & Bretsch, J. K. (2002). Soil lead and children’s blood lead levels in Syracuse, NY, USA. Environmental Geochemistry and Health, 18, 375–385.

    Article  Google Scholar 

  • Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., et al. (2007a). In vitro assessment of arsenic bioaccessibility in contaminated (anthropogenic and geogenic) soils. Chemosphere, 69, 69–78.

    Article  CAS  Google Scholar 

  • Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., et al. (2007b). Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Chemosphere, 69, 961–966.

    Article  CAS  Google Scholar 

  • Kelley, M. E., Brauning, S. E., Schoof, R. A., & Ruby, M. V. (2002). Assessing oral bioavailability of metals in soil. Columbus: Battelle Press.

    Google Scholar 

  • Lin, G. Z. (2009) Study on epidemiology of children lead poisoning and correlate impacting factors in Guangzhou. Ph D Thesis. Southern Medical University, China (in Chinese with English abstract).

  • Lin, G. Z., Peng, R. F., Chen, Q., Wu, Z. G., & Du, L. (2009). Lead in housing paints: An exposure source still not taken seriously for children lead poisoning in China. Environmental Research, 109, 1–5.

    Article  CAS  Google Scholar 

  • Ljung, K., Oomen, A., Duits, M., Selinus, O., & Berglund, M. (2007). Bioaccessibility of metals in urban playground soils. Journal of Environmental Science & Health A, 42, 1241–1250.

    Article  CAS  Google Scholar 

  • Ljung, K., Selinus, O., Otabbong, E., & Berglund, M. (2006). Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. Applied Geochemistry, 21, 1613–1624.

    Article  CAS  Google Scholar 

  • Lu, Y., Gong, Z. T., Zhang, G. L., & Burghardt, W. (2003). Concentrations and chemical speciations of Cu, Zn, Pb and Cr of urban soils in Nanjing, China. Geoderma, 115(1/2), 101–111.

    Article  CAS  Google Scholar 

  • Lu, Y., Zhu, F., Chen, J., Gan, H., & Guo, Y. (2007). Chemical fractionation of heavy metals in urban soils of Guangzhou, China. Environmental Monitoring and Assessment, 134, 429–439.

    Article  CAS  Google Scholar 

  • Luo, W., Lu, Y., Wang, G., Shi, Y., Wang, T., & Giesy, J. P. (2008). Distribution and availability of arsenic in soils from the industrialized urban area of Beijing. China Chemosphere, 72, 797–802.

    CAS  Google Scholar 

  • Madrid, F., Biasioli, M., & Ajmone-Marsan, F. (2008a). Availability and bioaccessibility of metals in fine particles of some urban soils. Archives of Environmental Contamination and Toxicology, 55(1), 21–32.

    Article  CAS  Google Scholar 

  • Madrid, F., Díaz-Barrientos, E., & Madrid, L. (2008b). Availability and bio-accessibility of metals in the clay fraction of urban soils of Sevilla. Environmental Pollution, 156, 605–610.

    Article  CAS  Google Scholar 

  • Marschner, B., Welge, P., Hack, A., Witttsiepe, J., & Wilhelm, M. (2006). Comparison of soil Pb in vitro bioaccessibility and in vivo bioavailability with Pb pools from a sequential soil extraction. Environmental Science and Technology, 40, 2812–2818.

    Article  CAS  Google Scholar 

  • Mielke, H. W., Gonzalez, C. R., Smith, M. K., & Mielke, P. W. (1999). The urban environment and children’s health: soils as an integrator of lead, zinc and cadmium in New Orleans, Louisiana. USA Environmental Research, 81, 117–129.

    Article  CAS  Google Scholar 

  • Mielke, H. W., & Reagan, P. L. (1998). Soil is an important pathway of human lead exposure. Environmental Health Perspectives, 106(Suppl 1), 217–229.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In D. L. Sparks (Ed.), Methods of soil analysis, Part 3, SSSA Book Ser. 5 (pp. 961–1010). Madison, WI: SSSA.

    Google Scholar 

  • Palumbo-Roe, B., & Klinck, B. (2007). Bioaccessibility of arsenic in mine waste-contaminated soils: A case study from an abandoned arsenic mine in SW England (UK). Journal of Environmental Science Health A, 42, 1251–1261.

    CAS  Google Scholar 

  • Poggio, L., Vrščaj, B., Schulin, R., Hepperle, E., & Marsan, F. A. (2009). Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy). Environmental Pollution, 157, 680–689.

    Article  CAS  Google Scholar 

  • Pouschat, P., & Zagury, G. (2006). In vitro gastrointestinal bioavailability of arsenic in soils collected near CCA-treated utility poles. Environmental Science and Technology, 40, 4317–4323.

    Article  CAS  Google Scholar 

  • Rodriguez, R. R., Basta, N. T., Casteel, S. W., Armstrong, F. P., & Ward, D. C. (1999). An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environmental Science and Technology, 33, 642–649.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30, 422–430.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., et al. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33, 3697–3705.

    Article  CAS  Google Scholar 

  • Sarkar, D., Makris, K. C., Parra-Noonan, M. T., & Datta, R. (2007). Effect of soil properties on arsenic fractionation and bioaccessibility in cattle and sheep dipping vat sites. Environment International, 33, 164–169.

    Article  CAS  Google Scholar 

  • Schroder, J. L., Basta, N. T., Casteel, S. W., Evans, T. J., Payton, M., & Si, J. (2004). Validation of the in vitro gastrointestinal (IVG) method to estimate relative bioavailable lead in contaminated soil. Journal of Environmental Quality, 33, 513–521.

    Article  CAS  Google Scholar 

  • Sips, A. J. A. M., Bruil, M. A., Dobbe, C. J. G., van de Kamp, E., Oomen, A. G., Pereboom, D. P. K. H., et al. (2001). Bioaccessibility of contaminants from ingested soil in humans, RIVM report 711701012/2001. Bilthoven, The Netherlands: National Institute of Public Health and the Environment (RIVM).

    Google Scholar 

  • US EPA. (1997). Exposure factors handbook volume I: General factors; EPA/600/P-95/002Fa. Washington D.C.: Office of Research and Development, US Government Printing Office.

  • US EPA. (2002). Child-specific exposure factors handbook, EPA/600/P-00/002B. Washington, D.C.: National Centre for Environmental Assessment.

  • US EPA. (2007). Estimation of relative bioavailability of lead in soil and soil-like materials using in vivo and in vitro methods. OSWER 9285.7–77. Washington, D.C.: Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency.

  • Van Wijnen, J. H., Clausing, P., & Brunekreef, B. (1990). Estimated soil ingestion by children. Environmental Research, 51, 147–162.

    Article  Google Scholar 

  • Wong, C. S. C., Li, X. D., & Thornton, I. (2006). Urban environmental geochemistry of trace metals. Environmental Pollution, 142, 1–16.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Science & Technology Department of Guangdong Province, China (2004B33301012) and the National Science Foundation of China (40771092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Yin, W., Huang, L. et al. Assessment of bioaccessibility and exposure risk of arsenic and lead in urban soils of Guangzhou City, China. Environ Geochem Health 33, 93–102 (2011). https://doi.org/10.1007/s10653-010-9324-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-010-9324-8

Keywords

Navigation