Skip to main content

Advertisement

Log in

Groundwater vulnerability to selenium in semi-arid environments: Amman Zarqa Basin, Jordan

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

An evaluation of ~250 samples of groundwater in the Amman Zarqa Basin for selenium along with other major and trace elements showed that concentrations of Se ranged between 0.09 and 742 μg/L, with an average value of about 24 μg/L. Selenium concentrations exceeded the recommended threshold for drinking water of the World Health Organization (WHO; 10 μ/L of Se) in 114 samples, with greater than 50 μg/L (quantity equivalent to the Jordanian standard of the allowed concentration of the element in water) of Se in nine cases. The average concentrations of Se in the lower, middle, and upper aquifers of the basin were 3.41, 32.99, and 9.19 μg/L, respectively. Based on the correlation with geologic formations and the statistical analysis of major/minor constituents and Piper tri-linear diagrams, we suggest that carbonate/phosphate dissolution, oxidation–reduction processes, and fertilizers/irrigation return flow are, together, the primary factors affecting the chemistry of the groundwater. Factor analysis helped to define the relative role of limestone-dolomitic dissolution in the aquifers (calcium, magnesium, and bicarbonate), agricultural activities (sulfate, nitrates, phosphorus, and potassium), oxidation–reduction factor (Eh, Fe, Mn, Cu, Zn, and Se), and anthropogenic (industrial) factor (EC, Fe, Cr, Co, Zn, and As). The high variability in Se concentrations might be related to the possibility of a multi-source origin of Se in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abed, A. (2000). Geology of Jordan, Water and Environment (p. 571). Jordan: Jordan Geological Association (in Arabic).

  • Abed, A., & Fakhouri, K. (1996). On the chemical variability of phosphatic particles from Jordanian phosphorite deposits. Chemical Geology, 131, 1–13. doi:10.1016/0009-2541(96)00011-3.

    Article  CAS  Google Scholar 

  • Abed, A., Sadaqah, R., & Al Kuisi, M. (2008). Uranium and potentially toxic metals during the mining, beneficiation, and processing of phosphorite and their effects on ground water in Jordan. Mine Water and the Environment, 27, 171–182. doi:10.1007/s10230-008-0039-3.

    Article  CAS  Google Scholar 

  • Adriano, D. C. (1986). Trace elements in the terrestrial environment (pp. 533). New York: Springer/Verlag Inc.

  • Al Kuisi, M., Al-Qinna, M., Margane, A., & Aljazzar, T. (2009). Spatial assessment of salinity and nitrate pollution in Amman Zarqa Basin: A case study. Environmental Geology (in press).

  • Al-Agha, M. (1985). Petrography, geochemistry and origin of the NW Jordan phosphorites. Thesis, University of Jordan, Amman.

  • Al-Assi, L. (2008). Arsenic contamination of groundwater and its health impact in Amman Zarqa Basin (AZB). MSc Thesis, University of Jordan, Amman.

  • Almasri, M., & Kaluarachchi, J. (2007). Modeling nitrate contamination of groundwater in agricultural watersheds. Journal of Hydrology, 343(3–4), 211–229. doi:10.1016/j.jhydrol.2007.06.016.

    Article  CAS  Google Scholar 

  • Altschuler, Z. (1980). The geochemistry of trace elements in marine phosphorites. Part 1: Characteristic abundances and enrichment. SEPM Special Publications, 29, 19–30.

    CAS  Google Scholar 

  • Basu, R., Haque, S. E., Tang, J., & Johannesson, K. H. (2007). Evolution of selenium concentrations and speciation in groundwater flow systems: Upper Floridan (Florida) and Carrizo Sand (Texas) aquifers. Chemical Geology, 246, 147–169.

    Article  CAS  Google Scholar 

  • Cutter, G. A., & Bruland, K. W. (1984). The marine biogeochemistry of selenium: A re-evaluation. Limnology and Oceanography, 29, 1179–1192.

    CAS  Google Scholar 

  • Department of Statistics (DOS). (2007). Estimation of population by Governorate. Department of Statistics, Amman, Jordan. http://www.dos.gov.jo/dos_home_a/main/index.htm. Accessed 10 Apr 2009.

  • Greenberg, H., Arnold, D., & Andrew, D. (1998). Standards methods for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Ham, Y. S., Tamiya, S., & Choi, I. S. (2007). Estimation of selenium concentration in shallow groundwater in alluvial fan area in Tsukui, Central Japan. Environmental Monitoring and Assessment, 125, 85–90.

    Article  CAS  Google Scholar 

  • Heal, R. H. (1990). Selenium. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 236–260). London: Wiley.

    Google Scholar 

  • Herbel, M. J., Johnson, T. M., Tanji, K. K., Gao, S., & Bullen, T. D. (2002). Selenium stable isotope ratios in California agricultural drainage water management systems. Journal of Environment Quality, 31, 1146–1156.

    CAS  Google Scholar 

  • Hunter, W. J. (2006). Removing selenate from groundwater with a vegetable oil-based biobarrier. Current Microbiology, 53, 244–248.

    Article  CAS  Google Scholar 

  • Hyun, S., Burns, P. E., Murarka, I., & Lee, L. S. (2006). Selenium(IV) and (VI) sorption by soils surrounding fly ash management facilities. Vadose Zone Journal, 5, 1110–1118.

    Article  CAS  Google Scholar 

  • Jeevanandam, M., Kannan, R., Srinivasalu, S., & Rammohan, V. (2007). Hydrogeochemistry and groundwater quality assessment of lower part of the Ponnaiyar River Basin, Cuddalore district, South India. Environmental Monitoring and Assessment, 132, 263–274.

    Article  CAS  Google Scholar 

  • Jordanian Institute of Standards and Metrology (JISM). (2008). Drinking water standards No. 286/2008, Amman, pp. 13.

  • Khaled, H. (1980). Petrography, mineralogy and geochemistry of Esh-Shidyia phosphorites. MSc Thesis, University of Jordan, Amman.

  • Kilani, S. (1997). Interpretation of the hydrogeology, hydrochemistry and isotopes in the Hummar (A4) aquifer, Amman-Zarqa basin, Jordan. MSc Thesis, University College London, London.

  • Leybourne, M. I., & Cameron, E. M. (2008). Source, transport, and fate of rhenium, selenium, molybdenum, arsenic, and copper in groundwater associated with porphyry–Cu deposits, Atacama Desert, Chile. Chemical Geology 247, 208–228.

    Article  CAS  Google Scholar 

  • Lucas, J., Flicoteaux, R., Nathan, Y., Prevot, L. & Shahar, Y. (1980). Differential aspects of francolite weathering. In Y. K. Bentor (Eds.), Marine phosphorites (vol. 29, pp. 79–101).

  • Margane, A., Hobler, M., Al-Momani, M. & Subah, A. (2002). Contributions to the hydrogeology of Northern and Central Jordan. Bundesanstalt fuer Geowissenschaften und Rohstoffe und Staatliche Geologische in der Bundesrepublik Deutschland, Stuttgart. ISBN 3-510-95890-X, 52 pp.

  • Masscheleyen, P. H., Delaune, R. D., & Patrick, W. H., Jr. (1990). Transformations of selenium as affected by sediment oxidation–reduction potential and pH. Environmental Science and Technology, 24, 91–96.

    Article  Google Scholar 

  • Meerbach, D. (2004). Practical Recommendations for nutrient management under irrigation with reclaimed water (p. 72). Amman: GTZ.

  • Mikbel, S. & Zacher, W. (1986). Fold structures in Northern Jordan. M. Jb. Palaeont, Mh.H. 4, 248–256, Stuttgart.

  • Naftz, D. L., & Rice, J. A. (1989). Geochemical processes controlling selenium in ground water after mining, Powder River Basin, Wyoming. USA Applied Geochemistry, 4, 565–575.

    Article  CAS  Google Scholar 

  • Nakamaru, Y., Tagami, K., & Uchida, S. (2006). Effect of phosphate addition on the sorption–desorption reaction of selenium in Japanese agricultural soils. Chemosphere, 63, 109–115.

    Article  CAS  Google Scholar 

  • Natural Resources Authority (NRA). (2000). Geological maps of Amman Zarqa Basin. Scale 1:50,000. Amman: NRA.

    Google Scholar 

  • Optimization for Sustainable Water Resources Management (OPTIMA). (2006). Case study: Zarqa River, Jordan. Third Management Board Meeting, May 18–19, 2006. Gumpoldskirchen, Austria.

  • Oremland, R. S. (1994). Biogeochemical transformations of selenium in anoxic environments. In W. T. Frankenberger Jr. & S. Benson (Eds.), Selenium in the environment (pp. 389–419). New York: Marcel Dekker.

    Google Scholar 

  • Papoff, P., Bocci, F., & Lanza, F. (1998). Speciation of selenium in natural waters and snow by DPCSV at the hanging mercury drop electrode. Microchemical Journal, 59, 50–76.

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in geochemical interpretation of water analysis. Transactions of the American Geophysical Union, 25, 914–928.

    Google Scholar 

  • Quennell, A. M. (1951). The geology and mineral resources of Trans-Jordan. Colonial Geology and Mineral Resources, 2, 85–115.

    CAS  Google Scholar 

  • Reeves, M. J., & Saadi, T. A. K. (1971). Factors controlling the deposition of some phosphate-bearing strata from Jordan. Economic Geology, 66, 451–465.

    Article  CAS  Google Scholar 

  • Schmitz, R. J. (1996). Introduction to water pollution biology. Houston: Gulf Publishing Company, 320 pp.

    Google Scholar 

  • Stolz, J. F., & Oremland, R. S. (1999). Bacterial respiration of arsenic and selenium. FEMS Microbiology Reviews, 23, 615–627.

    Article  CAS  Google Scholar 

  • Ta’any, R. A., Tahboub, A. B., & Saffarini, G. A. (2008). Geostatistical analysis of spatiotemporal variability of groundwater level fluctuations in Amman–Zarqa basin, Jordan: A case study. Environmental Geology, 57, 525–535.

    Google Scholar 

  • US Environmental Protection Agency (USEPA). (2006). Drinking water regulations and health advisories. Washington, DC: Office of Water.

    Google Scholar 

  • White, A. F., & Dubrovsky, N. M. (1994). Chemical oxidation–reduction controls on selenium mobility in groundwater systems. In W.T. Frankenberger Jr. & S. Benson (Eds.), Selenium in the environment. New York: Marcel Dekker.

    Google Scholar 

  • World Health Organization (WHO). (2006). Guidelines for drinking-water quality. Available online at: http://www.who.int/water_sanitation_health/dwq/gdwq3rev/en/index.html.

Download references

Acknowledgments

The authors would like to thank the anonymous reviewer of Environment Geochemistry and Health for his valuable comments which highly improved the article. The authors would like to thank the Deanship of Scientific Research at the University of Jordan for supporting and financing this research by grant no. (1100), 4/2007–2008. The authors are also grateful to Prof. Dr. Abed, Prof. Dr. Saffarini, and Prof. Jarrar from the Department of Applied Geology and Environment, University of Jordan, for their helpful and valuable discussion and improving the quality of the original article.

My great thanks are extended to my colleague Dr. Jason Rech from Miami University for his valuable comments and suggestions to improve the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Al Kuisi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuisi, M.A., Abdel-Fattah, A. Groundwater vulnerability to selenium in semi-arid environments: Amman Zarqa Basin, Jordan. Environ Geochem Health 32, 107–128 (2010). https://doi.org/10.1007/s10653-009-9269-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-009-9269-y

Keywords

Navigation