Skip to main content

Advertisement

Log in

Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Arsenic is subject to microbial interactions, which support a wide range of biogeochemical transformations of elements in natural environments such as wetlands. The arsenic detoxification potential of the bacterial strains was investigated with the arsenite oxidation gene, aox genotype, which were isolated from the natural and constructed wetlands. The isolates were able to grow in the presence of 10 mM of sodium arsenite (As(III) as NaAsO2) and 1 mM of d+glucose. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that these isolated strains resembled members of the genus that have arsenic-resistant systems (Acinetobacter sp., Aeromonas sp., Agrobacterium sp., Comamonas sp., Enterobacter sp., Pantoea sp., and Pseudomonas sp.) with sequence similarities of 81–98%. One bacterial isolate identified as Pseudomonas stutzeri strain GIST-BDan2 (EF429003) showed the activity of arsenite oxidation and existence of aoxB and aoxR gene, which could play an important role in arsenite oxidation to arsenate. This reaction may be considered as arsenic detoxification process. The results of a batch test showed that P. stutzeri GIST-BDan2 (EF429003) completely oxidized in 1 mM of As(III) to As(V) within 25–30 h. In this study, microbial activity was evaluated to provide a better understanding of arsenic biogeochemical cycle in both natural and constructed wetlands, where ecological niches for microorganisms could be different, with a specific focus on arsenic oxidation/reduction and detoxification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmann, D. A., Roberts, L., Krumholz, L. R., & Morel, F. M. M. (1994). Microbe grows by reducing arsenic. Nature, 371, 750. doi:10.1038/371750a0.

    Article  CAS  Google Scholar 

  • Alewell, C., Paul, S., Lischid, G., Kűsel, K., & Gehre, M. (2006). Characterizing the redox status in three different forested wetlands with geochemical data. Environmental Science and Technology, 40, 7609–7615. doi:10.1021/es061018y.

    Article  CAS  Google Scholar 

  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402. doi:10.1093/nar/25.17.3389.

    Article  CAS  Google Scholar 

  • Barbieri, P., Galassi, G., & Galli, E. (1989). Plasmid-encoded mercury resistance in a Pseudomonas stutzeri strain that degrades o-xylene. EFMS Microbiology Ecology, 62, 375–384. doi:10.1111/j.1574-6968.1989.tb03393.x.

    Article  CAS  Google Scholar 

  • Batty, L. C., Atkin, L., & Manning, D. A. C. (2005). Assessment of the ecological potential of mine-water treatment wetlands using a baseline survey of macroinvertebrate communities. Environmental Pollution, 138, 412–419. doi:10.1016/j.envpol.2005.04.022.

    Article  CAS  Google Scholar 

  • Batty, L. C., Baker, A. J. M., & Wheeler, B. D. (2006). The effect of vegetation on porewater composition in a natural wetlands receiving acid mine drainage. Wetlands, 6, 40–48. doi:10.1672/0277-5212(2006)26[40:TEOVOP]2.0.CO;2.

    Article  Google Scholar 

  • Bhumbia, D. K., & Keefer, R. F. (1994). Arsenic mobilization and bioavailability in soils. In J. O. Nriagu (Ed.), Arsenic in the environment (pp. 51–82). New York: Wiley.

    Google Scholar 

  • Burke, M. E., Gorham, E., & Pratt, D. C. (1974). Distribution of purple photosynthetic bacteria in wetlands and woodland habitats of central and northern Minnesota. Journal of Bacteriology, 117, 826–833.

    CAS  Google Scholar 

  • Carbonell, A. A., Aarabi, M. A., DeLaune, R. D., Gambrell, R. P., & Patrick, W. H., Jr. (1998). Arsenic in wetland vegetation: availability, phytotoxicity, uptake and effects on plant growth and nutrition. The Science of the Total Environment, 217, 189–199. doi:10.1016/S0048-9697(98)00195-8.

    Article  CAS  Google Scholar 

  • Cervantes, C., Ji, G., Ramirez, J. L., & Silver, S. (1994). Resistance to arsenic compounds in microorganisms. FEMS Microbiology Reviews, 15, 355–367. doi:10.1111/j.1574-6976.1994.tb00145.x.

    Article  CAS  Google Scholar 

  • Chang, Y. H., Han, J. I., Chun, J. S., Lee, K. C., Rhee, M. S., Kim, Y. B., et al. (2002). Comamonas koreensis sp. nov., a non-motile species from wetlands in Woopo, Korea. International Journal of Systematic and Evolutionary Microbiology, 52, 377–381.

    CAS  Google Scholar 

  • Chang, J. S., Kim, Y.-H., & Kim, K. W. (2008). The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold-silver mines in the Republic of Korea. Applied Microbiology and Biotechnology, 80, 155–165. doi:10.1007/s00253-008-1524-0.

    Article  CAS  Google Scholar 

  • Chang, J. S., Yoon, I. H., & Kim, K. W. (2007). Isolation and ars detoxification of arsenic-oxidizing bacteria from abandoned arsenic-contaminated mines. Journal of Microbiology and Biotechnology, 17, 812–821.

    CAS  Google Scholar 

  • D’Angelo, E. M., & Reddy, K. R. (1999). Regulators of heterotrophic microbial potentials in wetlands soils. Soil Biology and Biochemistry, 31, 815–830.

    Article  Google Scholar 

  • Dedysh, S. N., Panikov, N. S., Liesack, W., Grobokpf, R., Zhou, J., & Tiedje, J. M. (1998). Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands. Science, 282, 281–284.

    Article  CAS  Google Scholar 

  • Dunne, E. J., Reddy, R., & Clark, M. W. (2006). Biogeochemical indices of phosphorus retention and release by wetlands soils and adjacent stream sediments. Wetlands, 26, 1026–1041.

    Article  Google Scholar 

  • Hallberg, K. B., & Johnson, D. B. (2005). Microbiology of a wetlands ecosystem constructed to remediate mine drainage from a heavy metal mine. Science of the Total Environment, 338, 53–66.

    Article  CAS  Google Scholar 

  • Ibrahim, F., Halttunen, T., Tahvonen, R., & Salminen, S. (2006). Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms. Canadian Journal of Microbiology, 52, 877–885.

    Article  CAS  Google Scholar 

  • Jackson, C. R., Langner, H. W., Donahoe-Christiansen, J., Inskeep, W. P., & McDermott, T. R. (2001). Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environmental Microbiology, 3, 532–542.

    Article  CAS  Google Scholar 

  • Ji, G., & Silver, S. (1992a). Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pl258. Journal of Bacteriology, 174, 3684–3694.

    CAS  Google Scholar 

  • Ji, G., & Silver, S. (1992b). Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pl258. Proceedings of the National Academy of Science of the United States of America, 89, 9474–9478.

    Article  CAS  Google Scholar 

  • Kashyap, D. P., Botero, L. M., Franck, W. L., Hassett, D. J., & McDermott, T. R. (2006). Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. Journal of Bacteriology, 188, 1081–1088.

    Article  CAS  Google Scholar 

  • Le, X. C., Yalcin, S., & Ma, M. (2000). Speciation of submicrogram per liter levels of arsenic in water: on site species separation integrated with sample collection. Environmental Science and Technology, 34, 2342–2347.

    Article  CAS  Google Scholar 

  • Lee, S. J., Lee, S. C., Choi, S. H., Chung, M. K., Rhie, H. G., & Lee, H. S. (2001). Effect of ArsA, Arsenite-specific ATPase, on inhibition of cell division in Escherichia coli. Journal of Microbiology Biotechnology, 11, 825–830.

    CAS  Google Scholar 

  • Lee, Y. J., Romanek, C. S., Mills, G. L., Davis, R. C., Whitman, W. B., & Wiegel, J. G. (2006). Gracilibacter thermotolerans gen. nov., sp. nov., an anaerobic, thermotolerant bacterium from a constructed wetlands receiving acid sulfate water. International Journal of Systematic and Evolutional Microbiology, 56, 2089–2093.

    Article  CAS  Google Scholar 

  • Li, J., & Gu, J. D. (2007). Complete degradation of dimethyl isophthalate requires the biochemical cooperation between Klebsiella oxytoca Sc and Methylobacterium mesophilicum Sr isolated from wetlands sediment. Science of the Total Environment, 380, 181–187.

    Article  CAS  Google Scholar 

  • Mitchell, L. K., & Karathanasis, A. D. (1995). Treatment of metal–chloride-enriched wastewater by simulate constructed wetlands. Environmental Geochemistry and Health, 17, 119–126.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, R., Rosen, B. P., Phung, L. T., & Silver, S. (2002). Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiology Review, 26, 311–325.

    Article  CAS  Google Scholar 

  • Muller, D., Liévremont, D., Simeonova, D. D., Hubert, J.-C., & Lett, M.-C. (2003). Arsenite oxidase aox genes from a metal-resistant β-proteobacterium. Journal of Bacteriology, 185, 135–141.

    Article  CAS  Google Scholar 

  • Oremland, R. S., Kulp, T. R., Switzer, B. J., Hoeft, S. E., Baesman, S., Milluer, L. G., et al. (2005). A microbial arsenic cycle in a salt-saturated extreme environment. Science, 308, 1305–1308.

    Article  CAS  Google Scholar 

  • Oremland, R. S., & Stolz, J. F. (2003). The ecology of arsenic. Science, 300, 939–944.

    Article  CAS  Google Scholar 

  • Oremland, R. S., Tolz, J. F., & Hollibaugh, J. T. (2004). The microbial arsenic cycle in MonoLake, California. FEMS Microbiology Ecology, 48, 15–27.

    Article  CAS  Google Scholar 

  • Park, N. O., Kim, J. H., & Cho, J. W. (2008). Organic matter, anion and metal wastewater treatment in Damyang surface-flow constructed wetlands in Korea. Ecological Engineering, 32, 68–71.

    Article  Google Scholar 

  • Sambrook, J., & Russel, D. W. (2001). Molecular cloning: a laboratory manual (3rd edn.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Santini, J. M., Sly, L. I., Schnagl, R. D., & Macy, J. M. (2000). A new chemolithotrophic arsenite-oxidizing bacterium isolated from a goldmine: phylogenetic, physiological and preliminary biochemical studies. Applied and Environmental Microbiology, 66, 92–97.

    Article  CAS  Google Scholar 

  • Silver, S., & Phung, L. T. (2005). Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Applied and Environmental Microbiology, 71, 599–608.

    Article  CAS  Google Scholar 

  • Sima, J., Diáková, K., & Holcová, V. (2007). Redox processes of sulfur and manganese in a constructed wetlands. Chemistry & Biodiversity, 4, 2900–2912.

    Article  CAS  Google Scholar 

  • Ure, A. M. (1995). Methods of analysis for heavy metals in soils. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 55–68). London: Glasgow.

    Google Scholar 

  • Vymazal, J., Švehla, J., Kröpfelová, L., & Chrastný, V. (2007). Trace metals in Ragmites australis and Phalaris arundinacea growing in constructed and natural wetlands. Science of the Total Environment, 380, 154–162.

    Article  CAS  Google Scholar 

  • Wang, J. P., Qi, L., Moore, M. R., & Ng, J. C. (2002). A review of animal models for the study of arsenic carcinogenesis. Toxicology Letters, 133, 17–31.

    Article  CAS  Google Scholar 

  • Webb, J. S., McGinness, S., & Lappin-Scott, H. M. (1998). Metal removal by sulphate- reducing bacteria from natural and constructed wetlands. Journal of Applied Microbiology, 84, 240–248.

    Article  CAS  Google Scholar 

  • Weber, K. A., Urrutia, M. M., Churchill, P. F., Kukkadapu, R. K., & Roden, E. E. (2006). Anaerobic redox cycling of iron freshwater sediment microorganisms. Environmental Microbiology, 8, 100–113.

    Article  CAS  Google Scholar 

  • Weiss, J. V., Emerson, D., & Patrick Megonigal, L. (2004). Geochemical control of microbial Fe(III) reduction potential in wetlands: comparison of the rhizosphere to non-rhizosphere soil. FEMS Microbiology Ecology, 48, 89–100.

    Article  CAS  Google Scholar 

  • White, A. K., & Metcalf, W. W. (2004). Two C-P lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphite, and hypophosphite. Journal of Bacteriology, 186, 4730–4739.

    Article  CAS  Google Scholar 

  • Yoon, I. H., Chang, J. S., Lee, J. H., & Kim, K. W. (2008). Arsenite oxidation by Alcaligenes sp. strain RS-19 isolated from arsenic-contaminated mine area in South Korea. Environmental Geochemistry and Health, 31(10), 9–117.

    Google Scholar 

  • Zedler, J. B., & Kercher, S. (2005). Wetlands resources: status, trends, ecosystem services, and restorability. Annual Review Environment and Resources, 30, 39–74.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Science and Engineering Foundation (KOSEF) through the National Research Laboratory program funded by the Ministry of Science and Technology (no. M10300000298-06J0000-29810). Ji-Hoon Lee was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007-357-D00141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung-Woong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, JS., Yoon, IH., Lee, JH. et al. Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea. Environ Geochem Health 32, 95–105 (2010). https://doi.org/10.1007/s10653-009-9268-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-009-9268-z

Keywords

Navigation