Skip to main content
Log in

Toxicity of tri- and penta-valent arsenic, alone and in combination, to the cladoceran Daphnia carinata: the influence of microbial transformation in natural waters

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The acute toxicity of arsenic(III) and arsenic(V) alone and in combination to a cladoceran, Daphnia carinata, was studied in both cladoceran culture medium and natural water collected from a local suburban stream. As(III) was found to be more toxic than As(V) to Daphnia survival. The LC50 values for As(III), As(V), and As(III) + As(V) were 0.554, 1.499, and 0.692 mg l−1, respectively. Although various species of As, particularly As(III) and As(V) co-exist together in natural waters, the existing guidelines for water quality are based on individual As species. The results of this investigation suggest that As(III) and As(V) can interact either synergistically or additively resulting in an increase in the overall toxicity of the mixture compared to individual As species. Also, indigenous microorganisms in natural water may play a significant role in the transformation of As, thereby influencing the toxicity of As in receiving waters. This study clearly suggests that the joint action of As species should be considered in the development of water quality guidelines. To our knowledge this is the first study on the interactive effect of As(III) and As(V) to a cladoceran. Thus, this study suggests that these two species of As, when present together above 0.1 mg l−1 concentration, are toxic to fresh water invertebrates; therefore, pollution with these compounds may adversely affect natural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adema, D. (1978). Daphnia magna a test animal in acute and chronic toxicity test. Hydrobiologia, 59, 125–134.

    Article  CAS  Google Scholar 

  • Ahmann, D., Roberts, A. L., Krumholz, L. R., & Morel, F. M. M. (1994). Microbe grows by reducing arsenic. Nature, 371, 750.

    Article  CAS  Google Scholar 

  • Akter, K. F., Chen, Z., Smith, L., Davey, D., & Naidu, R. (2005). Speciation of arsenic in groundwater samples: A comparative study of CE-UV, HG-AAS and LC-ICP-MS. Talanta, 68, 406–415.

    Article  CAS  Google Scholar 

  • ANZECC (Australia & New Zealand Environment and Conservation Council). (2000). Australia and New Zealand guidelines for fresh and marine water quality. Canberra: Agriculture and Resource Management Council of Australia and New Zealand.

    Google Scholar 

  • Bolan, N. S., Mahimairaja, S., Megharaj, M., Naidu, R., & Adriano, D. C. (2006). Biotransformation of arsenic in soil and aquatic environments in relation to bioavailability and bioremediation. In R. Naidu et al. (Eds.), Managing arsenic in the environment: From soil to human health (pp. 433–454). Melbourne: CSIRO Publishing.

  • Caceres, T., Megharaj, M., & Naidu, R. (2007). Toxicity of fenamiphos and its metabolites to the cladoceran Daphnia carinata: the influence of microbial degradation in natural waters. Chemosphere, 66, 1264–1269.

    Article  CAS  Google Scholar 

  • Cooman, K., Debels, P., Gajardo, M., Urrutia, R., & Barra, R. (2005). Use of Daphnia spp. for the ecotoxicological assessment of water quality in an agricultural watershed in South–Central Chile. Archives of Environmental Contamination and Toxicology, 48, 191–200.

    Article  CAS  Google Scholar 

  • Dowdle, P. R., Laverman, A. M., & Oremland, R. S. (1996). Bacterial dissimilatory reduction of arsenic(V) to arsenic(III) in anoxic sediments. Applied Environmental Microbiology, 62, 1664–1669.

    CAS  Google Scholar 

  • Duker, A. A., Carranza, E. J. M., & Hale, M. (2005). Arsenic geochemistry and health. Environment International, 31, 631–641.

    Article  CAS  Google Scholar 

  • Edvantoro, B. B., Naidu, R., Megharaj, M., Merrington, G., & Singleton, I. (2004). Microbial formation of volatile arsenic in cattle dip site soils contaminated with arsenic and DDT. Applied Soil Ecology, 25, 207–217.

    Article  Google Scholar 

  • Edvantoro, B. B., Naidu, R., Megharaj, M., & Singleton, I. (2003). Changes in microbial properties associated with long-term arsenic and DDT contaminated soils at disused cattle dip sites. Ecotoxicology and Environmental Safety, 55, 344–351.

    Article  CAS  Google Scholar 

  • Ehrlich, H. L. (1995). Geomicrobiology (3rd ed.). New York: Marcel Dekker Inc.

    Google Scholar 

  • Enserink, E. L., Maas-Diepeveen, I. J. L., & Van Leeuwen, C. J. (1991). Combined effects of metals; an ecotoxicological evaluation. Water Research, 25, 679–687.

    Article  CAS  Google Scholar 

  • Freeman, M. C., Aggett, J., & O’Brien, G. (1986). Microbial transformations of arsenic in lake Ohakuri, New Zealand. Water Research, 20, 283–294.

    Article  CAS  Google Scholar 

  • Harmon, S. M., Specht, W. L., & Chandler, G. T. (2003). A comparison of the daphnids Ceriodaphnia dubia and Daphnia ambigua for their utilization in routine toxicity testing in the southeastern United States. Archives of Environmental Contamination and Toxicology, 45, 79–85.

    Article  CAS  Google Scholar 

  • Hickey, C. (1989). Sensitivity of four New Zealand cladoceran species and Dahpnia magna to aquatic toxicants. New Zealand Journal of Marine and Freshwater Research, 23, 131–137.

    Article  CAS  Google Scholar 

  • Kamaludeen, S. P. B., Megharaj, M., Sethunathan, N., Juhasz, A., & Naidu, R. (2003). Chromium-microorganisms interactions in soils: implications to remediation. Reviews of Environmental Contamination and Toxicology, 178, 93–164.

    Article  CAS  Google Scholar 

  • Krishnamurti, G. S. R., Megharaj, M., & Naidu, R. (2004). Bioavailability of cadmium-organic complexes to soil alga—an exception to free ion model. Journal of Agricultural and Food Chemistry, 52, 3894–3899.

    Article  CAS  Google Scholar 

  • Lima, A. R., Curtis, C., Hammermeister, D. E., Markee, T. P., Northcott, C. E., & Brooke, L. T. (1984). Acute and chronic toxicities of arsenic(III) to fathead minnows, flagfish, daphnids, and an amphipod. Archives of Environmental Contamination and Toxicology, 13, 595–601.

    Article  CAS  Google Scholar 

  • McLaren, R. G., Megharaj, M., Naidu, R., et al. (2006). Fate of arsenic in the soil environment. In R. Naidu (Ed.), Managing arsenic in the environment: from soil to human health (pp. 157–182). Melbourne: CSIRO Publishing.

    Google Scholar 

  • Megharaj, M., Singleton, I., McClure, N. C., & Naidu, R. (2000). Influence of petroleum hydrocarbon contamination on microalgae and microbial activities in a long-term contaminated soil. Archives of Environmental Contamination and Toxicology, 38, 439–445.

    Article  CAS  Google Scholar 

  • Megharaj, M., Venkateswarlu, K., & Rao, A. S. (1989). Interaction effects of insecticide combinations towards the growth of Scenedesmus bijugatus and Synechococcus elongates. Plant and Soil, 114, 159–163.

    Article  CAS  Google Scholar 

  • Naidu, R., Krishnamurti, G. S. R., Bolan, N. S., Wenzel, W., & Megharaj, M. (2001). Heavy metal interactions in soils and implications for soil microbial biodiversity. In M. N. Prasad (Ed.), Metals in the environment: Analysis by biodiversity (pp. 401–432). NY: Marcel Dekker, Inc.

    Google Scholar 

  • National Academy of Sciences. (1977). Arsenic. Philadelphia, Pennsylvania: Committee on medical and biological effects of environmental pollution. Division of Biological Sciences. Assembly of Life Sciences, National Research Council.

    Google Scholar 

  • Nordstrom, D. K. (2002). Worldwide occurrences of arsenic in groundwater. Science, 296, 2143–2214.

    Article  CAS  Google Scholar 

  • OECD. (2000). OECD guidelines for testing chemicals, revised proposal for updating guideline 202, Daphnia sp., acute immobilisation test. Paris: Organization for Economic Cooperation and Development.

  • Phyu, Y., Warne, M., & Lim, R. (2004). Toxicity of atrazine and molinate to the cladoceran Daphnia carinata and the effect of river water and bottom sediment on their bioavailability. Archives of Environmental Contamination and Toxicology, 46, 308–315.

    Article  CAS  Google Scholar 

  • Sanders, J. G., & Windom, H. L. (1980). The uptake and reduction of arsenic species by marine algae. Estuarine and Marine Coastal Science, 10, 555–567.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviours and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Turner, A. W. (1954). Bacterial oxidation of arsenite. Australian Journal of Biological Sciences, 7, 452–471.

    CAS  Google Scholar 

  • Valenti, T. W., Chaffin, J. L., Cherry, D. S., Schreiber, M. E., Valett, H. M., & Charles, M. (2005). Bioassessment of an Appalachian headwater stream influenced by an abandoned arsenic mine. Archives of Environmental Contamination and Toxicology, 49, 488–496.

    Article  CAS  Google Scholar 

  • Vig, K., Megharaj, M., Sethunathan, N., & Naidu, R. (2003). Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Advances in Environmental Research, 8, 121–135.

    Article  CAS  Google Scholar 

  • Welch, A. H., Westjohn, D. B., Helsel, D. R., & Wanty, R. B. (2000). Arsenic in groundwater of the United States: occurrence and geochemistry. Groundwater, 38, 589–604.

    CAS  Google Scholar 

  • Wilkie, J. A., & Hering, J. G. (1998). Rapid oxidation of geochemical arsenic(III) in streamwaters of the Eastern Sierra Nevada. Environmental Science and Technology, 32, 657–662.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of China (No.40301022), Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), Australia, and a State scholarship fund to Dr. Wenxiang He from the People’s Republic of China. The authors thank Dr. Z. Chen and Dr. Mohammad Rahman for their assistance with arsenic speciation analysis and Dr. Michael Beer for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mallavarapu Megharaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, W., Megharaj, M. & Naidu, R. Toxicity of tri- and penta-valent arsenic, alone and in combination, to the cladoceran Daphnia carinata: the influence of microbial transformation in natural waters. Environ Geochem Health 31 (Suppl 1), 133–141 (2009). https://doi.org/10.1007/s10653-008-9239-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-008-9239-9

Keywords

Navigation