Skip to main content
Log in

Effect of long-term exposure of mixture of ZnO and CuO nanoparticles on Scenedesmus obliquus

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The present study investigated the possible toxic effect of ZnO and CuO nanoparticles (NPs) on freshwater microalgae, Scenedesmus obliquus at environmentally- relevant nanoparticle concentration (1 mg/L) and high concentration (10 mg/L) in BG-11 medium under white light LED-illumination over 35 days. The effect of time on the stability of media, nanoparticles, and their relation to toxicity to algae was also studied. The transmission electron microscopy indicated structural damage to algae due to the presence of a mixture of nanoparticles (at 10 mg/L). FTIR (Fourier Transform infrared) analysis of a sample containing a mixture of nanoparticles showed an addition of bonds and a difference in the peak location and its intensity values. The inhibition time for biomass was observed between 14 days and 21 days at 10 mg/L NPs. At 1 mg/L, the order of toxicity of NPs to algae was found to be: CuO NPs (highest toxicity) > ZnO NPs>ZnO + CuO NPs (least toxicity). During exposure of algae cells to a mixture of NPs at 10 mg/L NP concentration, a smaller value of metal deposition was observed than that during exposure to individual NPs. Antagonistic toxic effects of two NPs on dry cell weight of algae was observed at both concentration levels. Future work is needed to understand the steps involved in toxicity due to mixture of NPs to algae so that environmental exposures of algae to NPs can be managed and minimized.

Highlights

  • Order of toxicity of nanoparticles (NPs) to algae cells: CuO NPs >ZnO NPs > CuO + ZnO NPs.

  • Presence of metal deposition in algal cells at 1 mg/L NP exposure

  • Lesser toxicity to algae cells due to a mixture of NPs than one type of NPs.

  • Long-term toxicity of NPs to algae differs than that of 96-h exposure.

  • Antagonistic toxic effects of ZnO and CuO NPs to algae biomass till 10 mg/L concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ansari FA, Ravindran B, Gupta SK, Nasr M, Rawat I, Bux F (2019) Techno-economic estimation of wastewater phycoremediation and environmental benefits using Scenedesmus obliquus microalgae. Journal of environmental management 240:293–302

    Article  CAS  Google Scholar 

  • Aravantinou AF, Tsarpali V, Dailianis S, Manariotis ID (2015) Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae. Ecotoxicol Environ Saf 114:109–116

    Article  CAS  Google Scholar 

  • Arredondo MR, Kuntke P, Ter Heijne A, Hamelers HV, Buisman CJ (2017) Load ratio determines the ammonia recovery and energy input of an electrochemical system. Water research 111:330–337

    Article  Google Scholar 

  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407(4):1461–1468

    Article  CAS  Google Scholar 

  • Atici, T, Ahiska, S, Altindag, A, & Aydin, D (2008). Ecological effects of some heavy metals (Cd, Pb, Hg, Cr) pollution of phytoplanktonic algae and zooplanktonic organisms in Sarýyar Dam Reservoir in Turkey. African Journal of Biotechnology, 7(12).

  • APHA (1998) Standards methods for the examination of water and wastewater, 20th edition. American Public Health Association, Washington, DC

    Google Scholar 

  • Basu S, Roy AS, Mohanty K, Ghoshal AK (2013) Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Bioresource Technology 143:369–377

    Article  CAS  Google Scholar 

  • Bundschuh M, Filser J, Lüderwald S, McKee MS, Metreveli G, Schaumann GE, Schulz R, Wagner S (2018) Nanoparticles in the environment: where do we come from, where do we go to? Environ Sci. Europe 30(1):1–17

    CAS  Google Scholar 

  • Chen Y, Wang Y, Zhang HB, Li X, Gui CX, Yu ZZ (2015) Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles. Carbon 82:67–76

    Article  CAS  Google Scholar 

  • Clavier A, Praetorius A, Stoll S (2019) Determination of nanoparticle heteroaggregation attachment efficiencies and rates in presence of natural organic matter monomers. Monte Carlo modelling. Science of The Total Environment 650:530–540

    Article  CAS  Google Scholar 

  • Deng R, Lin D, Zhu L, Majumdar S, White JC, Gardea-Torresdey JL, Xing B (2017) Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology 11(5):591–612

    Article  CAS  Google Scholar 

  • Di Caprio F, Altimari P, Pagnanelli F (2018) Effect of Ca2+ concentration on Scenedesmus sp. growth in heterotrophic and photoautotrophic cultivation. New biotechnology 40:228–235

    Article  Google Scholar 

  • Duan Y, Guo X, Yang J, Zhang M, Li Y (2020) Nutrients recycle and the growth of Scenedesmus obliquus in synthetic wastewater under different sodium carbonate concentrations. Royal Society open science 7(1):191214

    Article  CAS  Google Scholar 

  • El-Baz FK, Abdo SM, El-Sayed DAA, Mostafa MA, Elsherif HMR, Safaa HM, Abdon AS (2021) Application of defatted Scenedesmus obliquus biomass for broilers’ nutrition. Brazilian Journal of Poultry Science, 23.

  • Fang J, Shijirbaatar A, Lin DH, Wang DJ, Shen B, Zhou ZQ (2017) Stability of co-existing ZnO and TiO2 nanomaterials in natural water: aggregation and sedimentation mechanisms. Chemosphere 184:1125–1133

    Article  CAS  Google Scholar 

  • Fazelian N, Yousefzadi M, Movafeghi A (2020) Algal response to metal oxide nanoparticles: analysis of growth, protein content, and fatty acid composition. BioEnergy Res 13(3):944–954

    Article  CAS  Google Scholar 

  • Fazelian N, Movafeghi A, Yousefzadi M, Rahimzadeh M (2019) Cytotoxic impacts of CuO nanoparticles on the marine microalga Nannochloropsis oculata. Environmental Science and Pollution Research 26:17499–17511

    Article  CAS  Google Scholar 

  • Gris B, Morosinotto T, Giacometti GM, Bertucco A, Sforza E (2014) Cultivation of Scenedesmus obliquus in photobioreactors: effects of light intensities and light–dark cycles on growth, productivity, and biochemical composition. Applied biochemistry and biotechnology 172:2377–2389

    Article  CAS  Google Scholar 

  • Guillard RR, Kilham P, Jackson TA (1973) Kinetics of silicon‐limited growth in the marine diatom thalassiosira pseudonana hasle and heimdal (= cyclotella nana hustedt) 1, 2. J Phycol 9(3):233–237

    CAS  Google Scholar 

  • Gupta AK, Seth K, Maheshwari K, Baroliya PK, Meena M, Kumar A, Vinayak V (2021) Biosynthesis and extraction of high-value carotenoid from algae. Frontiers in Bioscience-Landmark 26(6):171–190

    Article  CAS  Google Scholar 

  • Han X, Jiang X, Guo L, Wang Y, Veeraraghavan VP, Krishna Mohan S, Cao D (2019) Anticarcinogenic potential of gold nanoparticles synthesized from Trichosanthes kirilowii in colon cancer cells through the induction of apoptotic pathway. Artificial cells, nanomedicine, and biotechnology 47(1):3577–3584

    Article  CAS  Google Scholar 

  • Hazeem LJ, Bououdina M, Rashdan S et al. (2016) Cumulative effect of zinc oxide and titanium oxide nanoparticles on growth and chlorophyll a content of Picochlorum sp. Environ Sci Pollut Res 23:2821–2830. https://doi.org/10.1007/s11356-015-5493-4

    Article  CAS  Google Scholar 

  • Hazeem LJ, Bououdina M, Rashdan S, Brunet L, Slomianny C, Boukherroub R (2016) Cumulative effect of zinc oxide and titanium oxide nanoparticles on growth and chlorophyll a content of Picochlorum sp. Environ Sci Pollut Res 23:2821–2830

    Article  CAS  Google Scholar 

  • Hazeem LJ, Waheed FA, Rashdan S, Bououdina M, Brunet L, Slomianny C, Elmeselmani WA (2015) Effect of magnetic iron oxide (Fe 3 O 4) nanoparticles on the growth and photosynthetic pigment content of Picochlorum sp. Environmental Science and Pollution Research 22:11728–11739

    Article  CAS  Google Scholar 

  • Hazeem LJ, Kuku G, Dewailly E, Slomianny C, Barras A, Hamdi A, Boukherroub R, Culha M, Bououdina M (2019) Toxicity effect of silver nanoparticles on photosynthetic pigment content, growth, ROS production and ultrastructural changes of microalgae Chlorella vulgaris. Nanomaterials 9(7):914

    Article  CAS  Google Scholar 

  • He M, Yan Y, Pei F, Wu M, Gebreluel T, Zou S, Wang C (2017) Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles. Sci Rep 7(1):1–12

    Article  Google Scholar 

  • Huang B, Wei ZB, Yang LY, Pan K, Miao AJ (2019) Combined toxicity of silver nanoparticles with hematite or plastic nanoparticles toward two freshwater algae. Environ Sci Technol 53(7):3871–3879

    Article  CAS  Google Scholar 

  • Ince NH, Dirilgen N, Apikyan IG, Tezcanli G, Üstün B (1999) Assessment of toxic interactions of heavy metals in binary mixtures: a statistical approach. Arch Environ Contam Toxicol 36(4):365–372

    Article  CAS  Google Scholar 

  • Iswarya V, Bhuvaneshwari M, Alex SA, Iyer S, Chaudhuri G, Chandrasekaran PT, Bhalerao GM, Chakravarty S, Raichur AM, Chandrasekaran N, Mukherjee A (2015) Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp. Aquatic Toxicol 161:154–169

    Article  CAS  Google Scholar 

  • Jain D, Bhojiya AA, Singh H, Daima HK, Singh M, Mohanty SR, Stephen BJ, Singh A (2020) Microbial fabrication of zinc oxide nanoparticles and evaluation of their antimicrobial and photocatalytic properties. Front Chem 8:778

    Article  CAS  Google Scholar 

  • Jeon S, Hurley KR, Bischof JC, Haynes CL, Hogan CJ (2016) Quantifying intra- and extracellular aggregation of iron oxide nanoparticles and its influence on specific absorption rate. Nanoscale 8(35):16053–16064. https://doi.org/10.1039/C6NR04042J

    Article  CAS  Google Scholar 

  • Ji J, Long Z, Lin D (2011) Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem Eng J170(2-3):525–530

    Article  Google Scholar 

  • Ji XJ, Ren LJ, Huang H (2015) Omega-3 biotechnology: a green and sustainable process for omega-3 fatty acids production. Frontiers in bioengineering and biotechnology 3:158

    Article  Google Scholar 

  • Jung J, Furutani H, Uematsu M, Park J (2014) Distributions of atmospheric non-sea-salt sulfate and methanesulfonic acid over the Pacific Ocean between 48 N and 55 S during summer. Atmospheric Environment 99:374–384

    Article  CAS  Google Scholar 

  • Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269(2-3):105–119

    Article  CAS  Google Scholar 

  • Karimi M, Sahandi Zangabad P, Baghaee-Ravari S, Ghazadeh M, Mirshekari H, Hamblin MR (2017) Smart nanostructures for cargo delivery: uncaging and activating by light. J Am Chem Soc 139(13):4584–4610

    Article  CAS  Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanoparticle Res 15(6):1–17

    Article  Google Scholar 

  • Ko KS, Koh DC, Kong IC (2018) Toxicity evaluation of individual and mixtures of nanoparticles based on algal chlorophyll content and cell count. Materials 11(1):121

    Article  Google Scholar 

  • Koh HG, Jeong YT, Lee B, Chang YK (2022) Light stress after heterotrophic cultivation enhances lutein and biofuel production from a novel algal strain Scenedesmus obliquus ABC-009. Journal of Microbiology and Biotechnology 32(3):378

    Article  CAS  Google Scholar 

  • Lee WM, An YJ (2013) Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere 91(4):536–544

    Article  CAS  Google Scholar 

  • Liu S, Wang C, Hou J, Wang P, Miao L, Fan X, You G, Xu Y (2018) Effects of Ag and Ag2S nanoparticles on denitrification in sediments. Water Res 137:28–36

    Article  CAS  Google Scholar 

  • López AF, Fabiani M, Lassalle VL, Spetter CV, Severini MF (2022) Critical review of the characteristics, interactions, and toxicity of micro/nanomaterials pollutants in aquatic environments. Marine Pollution Bulletin 174:113276

    Article  Google Scholar 

  • Luo S, Berges JA, He Z, Young EB (2017) Algal-microbial community collaboration for energy recovery and nutrient remediation from wastewater in integrated photobioelectrochemical systems. Algal Research 24:527–539

    Article  Google Scholar 

  • Lürling M (2003) Daphnia growth on microcystin‐producing and microcystin‐free Microcystis aeruginosa in different mixtures with the green alga Scenedesmus obliquus. Limnol Oceanogr 48(6):2214–2220

    Article  Google Scholar 

  • Lürling MFLLW (2003) Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. Annal Limnologie Int J Limnol 39(2):85–101. EDP Sciences

  • Lv J, Christie P, Zhang S (2019) Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ Sci Nano 6(1):41–59

    Article  CAS  Google Scholar 

  • Ma J, Liu J, Bao Y, Zhu Z, Wang X, Zhang J (2013) Synthesis of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property. Ceramics Int 39(3):2803–2810

    Article  CAS  Google Scholar 

  • Mahjoubian, M, Naeemi, AS, Moradi-Shoeili, Z, Tyler, CR, & Mansouri, B (2023) Toxicity of Silver Nanoparticles in the Presence of Zinc Oxide Nanoparticles Differs for Acute and Chronic Exposures in Zebrafish Archives of Environmental Contamination and Toxicology 84(1) 1-17 https://doi.org/10.1007/s00244-022-00965-0

  • Mai A, Terracciano A, Abraham J, RoyChowdhury A, Koutsospyros A, Su T‐L, Braida W, Christodoulatos C, Smolinski B (2022) Generation of biofuel from anaerobic digestion of Scenedesmus obliquus grown in energetic‐laden industrial wastewater: Understanding microalgae strains, co‐digestants, and digestate toxicity. Environmental Progress & Sustainable Energy 41(2):e13801

    Article  CAS  Google Scholar 

  • Mandal, S (2010). Exploring biodiesel production from a green microalga Scenedesmus obliquus (Doctoral dissertation, IIT Kharagpur).

  • Melegari SP, Perreault F, Costa RHR, Popovic R, Matias WG (2013) Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquatic Toxicol 142:431–440

    Article  Google Scholar 

  • Merdzan V, Domingos RF, Monteiro CE, Hadioui M, Wilkinson KJ (2014) The effects of different coatings on zinc oxide nanoparticles and their influence on dissolution and bioaccumulation by the green alga, C. reinhardtii. Sci Total Environ 488:316–324

    Article  Google Scholar 

  • Mustapha S, Ishola UA, Mohammed I, Rawat FB, Isa YM (2023) Production of high-quality pyrolytic bio-oils from nutrient-stressed Scenedesmus obliquus microalgae. Fuel 332:126299

    Article  CAS  Google Scholar 

  • Pakrashi S, Dalai S, Prathna TC, Trivedi S, Myneni R, Raichur AM, Chandrasekaran N, Mukherjee A (2013) Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations. Aquatic Toxicology 132:34–45

    Article  Google Scholar 

  • Parsai T, Kumar A (2019) Understanding effect of solution chemistry on heteroaggregation of zinc oxide and copper oxide nanoparticles. Chemosphere 235:457–469

    Article  CAS  Google Scholar 

  • Pendashteh A, Mousavi MF, Rahmanifar MS (2013) Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor. Electrochim Acta 88:347–357

    Article  CAS  Google Scholar 

  • Rai LC, Mallick N, Singh JB, Kumar HD (1991) Physiological and biochemical characteristics of a copper tolerant and a wild type strain of Anabaena doliolum under copper stress. J Plant Physiol 138(1):68–74

    Article  CAS  Google Scholar 

  • Rana S, Kumar A (2022) Toxicity of nanoparticles to algae-bacterial co-culture: Knowns and unknowns. Algal Research 62:102641

    Article  Google Scholar 

  • Sadiq I (2011) Mohammed, Sunandan Pakrashi, N. Chandrasekaran, and Amitava Mukherjee. Studies on toxicity of aluminum oxide (Al 2 O 3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. Journal of nanoparticle research 13:3287–3299

    Article  CAS  Google Scholar 

  • Sankar TS, Wastuwidyaningtyas BD, Dong Y, Lewis SA, Wang JD (2016) The nature of mutations induced by replication–transcription collisions. Nature 535(7610):178–181

    Article  CAS  Google Scholar 

  • Schambach JY, Kruse CP, Kitin P, Mays W, Hunt CG, Starkenburg SR, Barry AN (2022) Metabolism of Scenedesmus obliquus cultivated with raw plant substrates. Frontiers in Plant Science 13:992702

    Article  Google Scholar 

  • Sendra M, Moreno-Garrido I, Yeste MP, Gatica JM, Blasco J (2017) Toxicity of TiO2, in nanoparticle or bulk form to freshwater and marine microalgae under visible light and UV-A radiation. Environ Pollut 227:39–48

    Article  CAS  Google Scholar 

  • Sharma J, Kumar SS, Kumar V, Malyan SK, Mathimani T, Bishnoi NR, Pugazhendhi A (2020) Upgrading of microalgal consortia with CO2 from fermentation of wheat straw for the phycoremediation of domestic wastewater. Bioresource technology 305:123063

    Article  CAS  Google Scholar 

  • Shen X, Xue Z, Sun L, Zhao C, Sun S, Liu J, Liu J (2020) Effect of GR24 concentrations on biogas upgrade and nutrient removal by microalgae-based technology. Bioresource technology 312:123563

    Article  CAS  Google Scholar 

  • Sibi GAKD, Kumar DA, Gopal T, Harinath K, Banupriya S, Chaitra SJIJSREST (2017) Metal nanoparticle triggered growth and lipid production in Chlorella vulgaris. Int J Sci Res Environ Sci Toxicol 2(1):1–8

    Google Scholar 

  • Singh D, Kumar A (2019) Assessment of toxic interaction of nano zinc oxide and nano copper oxide on germination of Raphanus sativus seeds. Environmental monitoring and assessment 191:1–13

    Article  Google Scholar 

  • Srivastava, S, & Kumar, M (2019). Biodegradation of polycyclic aromatic hydrocarbons (PAHs): a sustainable approach. Sustainable green technologies for environmental management, 111-139.

  • Suman TY, Rajasree SR, Kirubagaran R (2015) Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicol Environ Saf 113:23–30

    Article  CAS  Google Scholar 

  • Thit A, Banta GT, Selck H (2015) Bioaccumulation, subcellular distribution and toxicity of sediment-associated copper in the ragworm Nereis diversicolor: the relative importance of aqueous copper, copper oxide nanoparticles and microparticles. Environ Pollut 202:50–57

    Article  CAS  Google Scholar 

  • Trenkenshu RP, Avsiyan AL (2009) DARK RESPIRATION AS A BIOMASS LOSS FACTOR OF MICROALGAE (A REVIEW). Ekologiya Morya 79:63

    Google Scholar 

  • Voigt J, Christensen J, Shastri VP (2014) Differential uptake of nanoparticles by endothelial cells through polyelectrolytes with affinity for caveolae. Proceedings of the National Academy of Sciences 111(8):2942–2947

    Article  CAS  Google Scholar 

  • von Moos N, Maillard L, Slaveykova VI (2015) Dynamics of sub-lethal effects of nano-CuO on the microalga Chlamydomonas reinhardtii during short-term exposure. Aquat Toxicol 161:267–275

    Article  Google Scholar 

  • Wang F, Liu T, Guan W, Xu L, Huo S, Ma A, Terry N (2021) Development of a strategy for enhancing the biomass growth and lipid accumulation of Chlorella sp. UJ-3 using magnetic Fe3O4 nanoparticles. Nanomaterials 11(11):2802

    Article  CAS  Google Scholar 

  • Wang H, Adeleye AS, Huang Y, Li F, Keller AA (2015) Heteroaggregation of nanoparticles with biocolloids and geocolloids. Adv Colloid Interface Sci 226:24–36

    Article  CAS  Google Scholar 

  • Wang Q, Wangjin X, Zhang Y, Wang N, Wang Y, Meng G, Chen Y (2020) The toxicity of virgin and UV-aged PVC microplastics on the growth of freshwater algae Chlamydomonas reinhardtii. Sci Total Environ 749:141603

    Article  CAS  Google Scholar 

  • Wang Z, Wang Z, Lin S, Jin H, Gao S, Zhu Y, Jin J (2018) Nanoparticle templated nanofiltration membranes for ultrahigh performance desalination. Nature communications 9(1):2004

    Article  Google Scholar 

  • Xiao J, Nian S, Huang Q (2015) Assembly of kafirin/carboxymethyl chitosan nanoparticles to enhance the cellular uptake of curcumin. Food Hydrocoll 51:166–175

    Article  CAS  Google Scholar 

  • Xue HB, Sigg L (1990) Binding of Cu (II) to algae in a metal buffer. Water Research 24(9):1129–1136

    Article  CAS  Google Scholar 

  • Ye N, Wang Z, Wang S, Peijnenburg WJ (2018) Toxicity of mixtures of zinc oxide and graphene oxide nanoparticles to aquatic organisms of different trophic level: particles outperform dissolved ions. Nanotoxicology 12(5):423–438

    Article  CAS  Google Scholar 

  • Yu Y, Dai W, Luan Y (2023) Bio-and eco-corona related to plants: Understanding the formation and biological effects of plant protein coatings on nanoparticles. Environmental Pollution 317:120784

    Article  CAS  Google Scholar 

  • Zhao J, Cao X, Liu X, Wang Z, Zhang C, White JC, Xing B (2016) Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: adhesion, uptake, and toxicity. Nanotoxicology 10(9):1297–1305

    Article  CAS  Google Scholar 

  • Zhu X, Zhao W, Chen X, Zhao T, Tan L, Wang J (2020) Growth inhibition of the microalgae Skeletonema costatum under copper nanoparticles with microplastic exposure. Marine Environmental Research 158:105005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Department of Civil Engineering, IIT Delhi (India) and experiments were performed in Environmental Engineering Laboratory, IIT Delhi, and Central Research Facility, IIT Delhi (FTIR, TEM, and ICP-MS).

Author contributions

SR- conceptualization; data curation; investigation; methodology; visualization; writing-original draft; AK- conceptualization; methodology; supervision; writing-review & editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, S., Kumar, A. Effect of long-term exposure of mixture of ZnO and CuO nanoparticles on Scenedesmus obliquus. Ecotoxicology 32, 1233–1246 (2023). https://doi.org/10.1007/s10646-023-02710-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-023-02710-2

Keywords

Navigation