Skip to main content
Log in

Sublethal and transgenerational effects of spinetoram on the biological traits of Plutella xylostella (L.) (Lepidoptera: Plutellidae)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Spinetoram, a spinosyn insecticide is used to manage lepidopteran pests, including diamondback moth, Plutella xylostella. In addition to determining the lethal effects, identifying low and/or sublethal effects of an insecticide is crucial to understanding the total impact of an insecticide. We assessed the low lethal and sublethal effects of spinetoram on two successive generations of P. xylostella. The initial bioassay results showed that spinetoram exhibited high toxicity against P. xylostella with an LC50 of 0.114 mg L−1 after 48 h exposure. The low lethal (LC25) and sublethal (LC10) concentrations of spinetoram showed significant reduction in pupation rate, pupal weight and adult emergence. The fecundity of F1 generation was significantly lower in LC25 (117.85 eggs/female) and LC10 (121.34 eggs/female) treated group than untreated control (145.32 eggs/female). The intrinsic rates of increase (r) was significantly lower (r = 0.1984 day−1) in spinetoram treated P. xylostella F1 progeny compared to untreated control (r = 0.2394 day−1). Our results suggest that LC10 and LC25 concentration of spinetoram might affect P. xylostella population growth by reducing its survival, development, and reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data analyzed during this study are included in this published article.

References

  • APRD (2020). Arthropod pesticide resistance database. Michigan State University, http://www.pesticideresistance.org. Accessed 22 Apr 2020

  • Ayyanath MM, Cutler GC, Scott-Dupree CD, Sibley PK (2013) Transgenerational shifts in reproduction hormesis in green peach aphid exposed to low concentrations of imidacloprid. PLoS ONE 8(9):e74532. https://doi.org/10.1371/journal.pone.0074532

    Article  CAS  Google Scholar 

  • Bacci L, Lupi D, Savoldelli S, Rossaro B (2016) A review of Spinosyns, a derivative of biological acting substances as a class of insecticides with a broad range of action against many insect pests. J Entomol Acarol Res 48(1):40–52

    Google Scholar 

  • Campos MR, Rodrigues ARS, Silva WM, Silva TBM, Silva VRF, Guedes RNC, Siqueira HAA (2014) Spinosad and the tomato borer Tuta absoluta: a bioinsecticide, an invasive pest threat, and high insecticide resistance. PLoS ONE 9(8):e103235

    Google Scholar 

  • Chen X, Ma K, Li F, Liang P, Liu Y, Guo T, Song D, Desneux N, Gao X (2016) Sublethal and transgenerational effects of sulfoxaflor on the biological traits of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). Ecotoxicology 25(10):1841–1848

    CAS  Google Scholar 

  • Chen XD, Seo M, Stelinski LL (2017) Behavioral and hormetic effects of the butenolide insecticide, flupyradifurone, on Asian citrus psyllid, Diaphorina citri. Crop Protect 98:102–107

    CAS  Google Scholar 

  • Chi H (1988) Life-table analysis incorporating both sexes and variable development rates among individuals. Environ Entomol 17(1):26–34

    Google Scholar 

  • Chi H (2018) TWOSEX-MSChart: a computer program for the age stage, two-sex life table analysis. http://140.120.197.173/Ecology/Download/Twosex-MSChart-exe-B200000.rar

  • Chi H, Liu HSI (1985) Two new methods for the study of insect population ecology. Bull Inst Zool Acad Sin 24(2):225–240

    Google Scholar 

  • Chi H, Su H-Y (2006) Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ Entomol 35(1):10–21

    Google Scholar 

  • Chi H, You M, Atlıhan R, Smith CL, Kavousi A, Özgökçe MS, Güncan A, Tuan SJ, Fu JW, Xu YY (2020) Age-stage, two-sex life table: an introduction to theory, data analysis, and application. Entomol Gen 40(2):103–124

    Google Scholar 

  • Deng D, Duan W, Wang H, Zhang K, Guo J, Yuan L, Wang L, Wu S (2019) Assessment of the effects of lethal and sublethal exposure to dinotefuran on the wheat aphid Rhopalosiphum padi (Linnaeus). Ecotoxicology 28(7):825–833

    CAS  Google Scholar 

  • Depalo L, Masetti A, Avilla J, Bosch D, Pasqualini E (2016) Toxicity and residual activity of spinetoram to neonate larvae of Grapholita molesta (Busck) and Cydia pomonella (L.) (Lepidoptera: Tortricidae): semi-field and laboratory trials. Crop Protect 89:32–37

    CAS  Google Scholar 

  • Desneux N, Decourtye A, Delpuech J-M (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    CAS  Google Scholar 

  • Dong J, Wang K, Li Y, Wang S (2017) Lethal and sublethal effects of cyantraniliprole on Helicoverpa assulta (Lepidoptera: Noctuidae). Pestic Biochem Physiol 136:58–63

    CAS  Google Scholar 

  • Dripps J, Olson B, Sparks T, Crouse G (2008) Spinetoram: how artificial intelligence combined natural fermentation with synthetic chemistry to produce a new spinosyn insecticide. Plant Health Prog. https://www.plantmanagementnetwork.org/pub/php/perspective/2008/spinetoram/

  • Duan DH, Zhang XY, Yang QQ, Hu FJ, Su J, Deng SH, Zhuo JY (2012) Controlling effect of spinetoram against stored-grain insects. Grain Technol Econ 37(6):32–34

    Google Scholar 

  • Enríquez CLR, Pineda S, Figueroa JI, Schneider MI, Martínez AM (2010) Toxicity and sublethal effects of methoxyfenozide on Spodoptera exigua (Lepidoptera: Noctuidae). J Econ Entomol 103(3):662–667

    Google Scholar 

  • Finney DJ (1971) Probit analysis. 3rd ed. Cambridge Univ. Press, London

    Google Scholar 

  • Fisher R (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    Google Scholar 

  • Fu B, Li Q, Qiu H, Tang L, Zeng D, Liu K, Gao Y (2018) Resistance development, stability, cross‐resistance potential, biological fitness and biochemical mechanisms of spinetoram resistance in Thrips hawaiiensis (Thysanoptera: Thripidae). Pest Manage Sci 74(7):1564–1574

    CAS  Google Scholar 

  • Gao Y, Kim K, Kwon DH, Jeong IH, Clark JM, Lee SH (2018) Transcriptome-based identification and characterization of genes commonly responding to five different insecticides in the diamondback moth, Plutella xylostella. Pestic Biochem Physiol 144:1–9

    CAS  Google Scholar 

  • Gong Y, Xu B, Zhang Y, Gao X, Wu Q (2015) Demonstration of an adaptive response to preconditioning Frankliniella occidentalis (Pergande) to sublethal doses of spinosad: a hormetic-dose response. Ecotoxicology 24(5):1141–1151

    CAS  Google Scholar 

  • Guedes RNC, Walse SS, Throne JE (2017) Sublethal exposure, insecticide resistance, and community stress. Curr Opin Insect Sci 21:47–53

    Google Scholar 

  • Guo L, Desneux N, Sonoda S, Liang P, Han P, Gao X-W (2013) Sublethal and transgenerational effects of chlorantraniliprole on biological traits of the diamondback moth. Plutella xylostella L. Crop Protect 48:29–34

    CAS  Google Scholar 

  • Han W, Zhang S, Shen F, Liu M, Ren C, Gao X (2012) Residual toxicity and sublethal effects of chlorantraniliprole on Plutella xylostella (Lepidoptera: Plutellidae). Pest Manage Sci 68(8):1184–1190

    CAS  Google Scholar 

  • Hedayati M, Sadeghi A, Maroufpoor M, Ghobari H, Güncan A (2019) Transgenerational sublethal effects of abamectin and pyridaben on demographic traits of Phytonemus pallidus (Banks) (Acari: Tarsonemidae). Ecotoxicology 28(4):467–477

    CAS  Google Scholar 

  • Huang HW, Chi H, Smith CL (2017) Linking demography and consumption of Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae) fed on Solanum photeinocarpum (Solanales: Solanaceae): with a new method to project the uncertainty of population growth and consumption. J Econ Entomol 111(1):1–9

    Google Scholar 

  • Lai T, Su J (2011) Effects of chlorantraniliprole on development and reproduction of beet armyworm, Spodoptera exigua (Hübner). J Pest Sci 84(3):381–386

    Google Scholar 

  • Liang PZ, Ma KS, Chen XW, Tang CY, Xia J, Chi H, Gao XW (2019) Toxicity and sublethal effects of flupyradifurone, a novel butenolide insecticide, on the development and fecundity of Aphis gossypii (Hemiptera: Aphididae). J Econ Entomol 112(2):852–858

    CAS  Google Scholar 

  • Lira EC, Bolzan A, Nascimento ARB, Amaral FSA, Kanno RH, Kaiser IS, Omoto C (2020) Resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to spinetoram: inheritance and cross‐resistance to spinosad. Pest Manag Sci 76(8):2674–2680. https://doi.org/10.1002/ps.5812

    Article  CAS  Google Scholar 

  • Liu D, Jia ZQ, Peng YC, Sheng CW, Tang T, Xu L, Han ZJ, Zhao CQ (2018) Toxicity and sublethal effects of fluralaner on Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Pestic Biochem Physiol 152:8–16

    CAS  Google Scholar 

  • Mahmoudvand M, Abbasipour H, Garjan AS, Bandani AR (2011a) Sublethal effects of hexaflumuron on development and reproduction of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Insect Sci 18(6):689–896

    CAS  Google Scholar 

  • Mahmoudvand M, Abbasipour H, Garjan AS, Bandani AR (2011b) Sublethal effects of indoxacarb on the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae). Appl Entomol Zool 46(1):75–80

    CAS  Google Scholar 

  • Mahmoudvand M, Moharramipour S (2015) Sublethal effects of fenoxycarb on the Plutella xylostella (Lepidoptera: Plutellidae). J Insect Sci 15(1):82

    Google Scholar 

  • Navik O, Ramya RS, Varshney R, Jalali SK, Shivalingaswamy TM, Rangeshwaran R, Lalitha Y, Patil J, Ballal CR (2019) Integrating biocontrol agents with farmer’s practice: impact on diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) and cabbage yield. Egypt J Biol Pest Co 29(1):35

    Google Scholar 

  • Neto JEL, Amaral MHP, Siqueira HAA, Barros R, Silva PAF (2016) Resistance monitoring of Plutella xylostella (L.) (Lepidoptera: Plutellidae) to risk-reduced insecticides and cross resistance to spinetoram. Phytoparasitica 44(5):631–640

    Google Scholar 

  • Planes L, Catalán J, Tena A, Porcuna JL, Jacas JA, Izquierdo J, Urbaneja A (2013) Lethal and sublethal effects of spirotetramat on the mealybug destroyer, Cryptolaemus montrouzieri. J Pest Sci 86(2):321–327

    Google Scholar 

  • Qiu S, Lu Z (2011) Field effect trials on the spinetoram against Noctuidae pests on Brassica oleracea. Shanghai Veg 3:52

    Google Scholar 

  • Qu Y, Xiao D, Li J, Chen Z, Biondi A, Desneux N, Gao X, Song D (2015) Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines. Ecotoxicology 24(3):479

    CAS  Google Scholar 

  • Rehan A, Freed S (2015) Fitness cost of methoxyfenozide and the effects of its sublethal doses on development, reproduction, and survival of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Neotrop Entomol 44(5):513–520

    CAS  Google Scholar 

  • Ribeiro LMS, Wanderley-Teixeira V, Ferreira HN, Teixeira ÁAC, Siqueira HAA (2014) Fitness costs associated with field-evolved resistance to chlorantraniliprole in Plutella xylostella (Lepidoptera: Plutellidae). Bull Entomol Res 104(1):88–96

    CAS  Google Scholar 

  • Rumbos CI, Dutton AC, Athanassiou CG (2018) Insecticidal effect of spinetoram and thiamethoxam applied alone or in combination for the control of major stored-product beetle species. J Stored Prod Res 75:56–63

    Google Scholar 

  • Salgado VL (1998) Studies on the mode of action of spinosad: Insect symptoms and physiological correlates. Pestic Biochem Physiol 60(2):91–102

    CAS  Google Scholar 

  • Sial AA, Brunner JF (2010) Toxicity and residual efficacy of chlorantraniliprole, spinetoram, and emamectin benzoate to obliquebanded leafroller (Lepidoptera: Tortricidae). J Econ Entomol 103(4):1277–1285

    Google Scholar 

  • Sial AA, Brunner JF, Garczynski SF (2011) Biochemical characterization of chlorantraniliprole and spinetoram resistance in laboratory-selected obliquebanded leafroller, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae). Pestic Biochem Physiol 99(3):274–279

    CAS  Google Scholar 

  • Singh JP, Marwaha KK (2000) Effect of sublethal concentrations of some insecticides on growth and development of maize stalk borer, Chilo partellus (Swinhoe) larvae. Shashpa 7(2):181–186

    CAS  Google Scholar 

  • Sohrabi F, Shishehbor P, Saber M, Mosaddegh MS (2011) Lethal and sublethal effects of buprofezin and imidacloprid on Bemisia tabaci (Hemiptera: Aleyrodidae). Crop Protect 30(9):1190–1195

    CAS  Google Scholar 

  • Song Y, Dong J, Sun H (2013) Chlorantraniliprole at sublethal concentrations may reduce the population growth of the Asian corn borer, Ostrinia furnacalis (Lepidoptera: Pyralidae). Acta Entomol Sin 56(4):446–451

    CAS  Google Scholar 

  • Su C, Xia X (2020) Sublethal effects of methylthio-diafenthiuron on the life table parameters and enzymatic properties of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). Pestic Biochem Physiol 162:43

    CAS  Google Scholar 

  • Sun J, Liang P, Gao X (2010) Inheritance of resistance to a new non‐steroidal ecdysone agonist, fufenozide, in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Pest Manage Sci 66(4):406–411

    CAS  Google Scholar 

  • Tamilselvan R, Kennedy JS, Suganthi A (2020) Monitoring the resistance and baseline susceptibility of Plutella xylostella (L.) (Lepidoptera: Plutellidae) against spinetoram in Tamil Nadu. India. Crop Protect 142:105491. https://doi.org/10.1016/j.cropro.2020.105491

    Article  CAS  Google Scholar 

  • Troczka B, Zimmer CT, Elias J, Schorn C, Bass C, Davies TGE, Field LM, Williamson MS, Slater R, Nauen R (2012) Resistance to diamide insecticides in diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is associated with a mutation in the membrane-spanning domain of the ryanodine receptor. Insect Biochem Mol Biol 42(11):873–880

    CAS  Google Scholar 

  • Ullah F, Gul H, Desneux N, Gao X, Song D (2019a) Imidacloprid-induced hormesis effects on demographic traits of the melon aphid, Aphis gossypii. Entomol Gen 39(3-4):325–337

    Google Scholar 

  • Ullah F, Gul H, Desneux N, Qu Y, Xiao X, Khattak AM, Gao X, Song D (2019b) Acetamiprid-induced hormetic effects and vitellogenin gene (Vg) expression in the melon aphid, Aphis gossypii. Entomol Gen 39(3-4):259–270

    Google Scholar 

  • Vassilakos TN, Athanassiou CG, Saglam O, Chloridis AS, Dripps JE (2012) Insecticidal effect of spinetoram against six major stored grain insect species. J Stored Prod Res 51(2):69–73

    CAS  Google Scholar 

  • Vassilakos TN, Athanassiou CG, Tsiropoulos NG (2015) Influence of grain type on the efficacy of spinetoram for the control of Rhyzopertha dominica, Sitophilus granarius and Sitophilus oryzae. J Stored Prod Res 64:1–7

    Google Scholar 

  • Wang D, Gong P, Li M, Qiu X, Wang K (2009) Sublethal effects of spinosad on survival, growth and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae). Pest Manage Sci 65(2):223–227

    CAS  Google Scholar 

  • Wang L, Zhang Y, Xie W, Wu Q, Wang S (2016) Sublethal effects of spinetoram on the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Pestic Biochem Physiol 132:102–107. https://doi.org/10.1016/j.pestbp.2016.02.002

    Article  CAS  Google Scholar 

  • Watson GB, Chouinard SW, Cook KR, Geng C, Gifford JM, Gustafson GD, Hasler JM, Larrinua IM, Letherer TJ, Mitchell JC (2010) A spinosyn-sensitive Drosophila melanogaster nicotinic acetylcholine receptor identified through chemically induced target site resistance, resistance gene identification, and heterologous expression. Insect Biochem Mol Biol 40(5):376–384

    CAS  Google Scholar 

  • Wei J, Zhang L, Yang S, Xie B, An S, Liang G (2018) Assessment of the lethal and sublethal effects by spinetoram on cotton bollworm. PLoS ONE 13(9):e0204154. https://doi.org/10.1371/journal.pone.0204154

    Article  CAS  Google Scholar 

  • Whalon ME, Mota-Sanchez D, Hollingworth RM (2008) Analysis of global pesticide resistance in arthropods. In: Whalon ME (Ed.) Global pesticide resistance in arthropods. CABI, Wallingford

    Google Scholar 

  • Xia H, Chen M, Liu W, Wang J (2013) Field effect trials on the mixture of sulfoxaflor and spinetoram against rice migratory pests. Mod Agrochem 12(3):52–53

    CAS  Google Scholar 

  • Xiao D, Yang T, Desneux N, Han P, Gao X (2015) Assessment of sublethal and transgenerational effects of pirimicarb on the wheat aphids Rhopalosiphum padi and Sitobion avenae. PLoS ONE 10(6):e0128936. https://doi.org/10.1371/journal.pone.0128936

    Article  CAS  Google Scholar 

  • Xu C, Zhang Z, Cui K, Zhao Y, Han J, Liu F, Mu W (2016) Effects of sublethal concentrations of cyantraniliprole on the development, fecundity and nutritional physiology of the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). PLoS ONE 11(6):e0156555. https://doi.org/10.1371/journal.pone.0156555

    Article  CAS  Google Scholar 

  • Yin XH, Wu QJ, Li XF, Zhang YJ, Xu BY (2008) Sublethal effects of spinosad on Plutella xylostella (Lepidoptera: Yponomeutidae). Crop Protect 27(10):1385–1391

    CAS  Google Scholar 

  • Zhang RM, Dong JF, Chen JH, Ji QE, Cui JJ (2013) The sublethal effects of chlorantraniliprole on Helicoverpa armigera (Lepidoptera: Noctuidae). J Integr Agric 12(3):457–466

    Google Scholar 

  • Zhang Y, Guo L, Atlihan R, Chi H, Chu D (2019) Demographic analysis of progeny fitness and timing of resurgence of Laodelphax striatellus after insecticides exposure. Entomol Gen 39(3-4):221–230

    Google Scholar 

  • Zhang Z, Li JH, Gao XW (2012) Sublethal effects of metaflumizone on Plutella xylostella (Lepidoptera: Plutellidae). J Integr Agric 11(7):1145–1150

    CAS  Google Scholar 

  • Zhu Q, He Y, Yao J, Liu Y, Tao L, Huang Q (2012) Effects of sublethal concentrations of the chitin synthesis inhibitor, hexaflumuron, on the development and hemolymph physiology of the cutworm, Spodoptera litura. J Insect Sci 12(1):27

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Bureau of Agricultural Insect Resources (NBAIR), Bengaluru for providing DBM mother culture. This research was sponsored by the Government of India, National Institute of Plant Health Management (NIPHM), Hyderabad. We are grateful to Dr. Hsin Chi, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China, for their statistical assistance with the two-sex life table theory used in this work.

Author contributions

JSK received funding. JSK, RT and AS designed the experiment. RT and AS performed the experiments and analyzed the data. RT and JSK wrote and reviewed the manuscript. All authors read and approved the manuscript.

Funding

This work was supported by the Government of India, National Institute of Plant Health Management, Hyderabad under grant NIPHM/CPPS/CBE/AEN/2016/R010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Kennedy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamilselvan, R., Kennedy, J.S. & Suganthi, A. Sublethal and transgenerational effects of spinetoram on the biological traits of Plutella xylostella (L.) (Lepidoptera: Plutellidae). Ecotoxicology 30, 667–677 (2021). https://doi.org/10.1007/s10646-021-02385-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-021-02385-7

Keywords

Navigation