Skip to main content
Log in

Mitigation of Cd toxicity by Mn in young plants of cacao, evaluated by the proteomic profiles of leaves and roots

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Cd is a non-essential metal and highly toxic to plants, animals and humans, even at very low concentrations. Cd has been found in cocoa beans and in their products, as in the case of chocolate. Mn plays an important role in photosynthetic and can interact with Cd and attenuate its toxic effects on plants. The objective of this work was to evaluate the mechanisms of Mn response in the mitigation of Cd toxicity in young plants of the CCN 51 cacao genotype submitted to 0.8 mmol Cd kg−1, 1.6 mmol Mn kg−1 or the combination of 0.4 mmol Cd kg−1 + 0.8 mmol Mn kg−1 soil, together with the control treatment (without addition of Cd and Mn in soil), by means of analysis of changes in the profile of exclusive proteins (EP) and differentially accumulated proteins (DAP). Leaf and root proteins were extracted and quantified from the different treatments, followed by proteomic analysis. About eight DAP and 38 EP were identified in leaves, whereas in roots 43 DAP and 21 EP were identified. Some important proteins induced in the presence of Cd and repressed in the presence of Cd + Mn or vice versa, were ATPases, isoflavone reductase, proteasome and chaperonin. It was concluded that proteins involved in oxidoreduction and defense and stress response processes, in addition to other processes, were induced in the presence of Cd and repressed in the presence of Cd + Mn. This demonstrated that Mn was able to mitigate the toxic effects of Cd on young plants of the CCN 51 cocoa genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida A-AF, Valle RR (2007) Ecophysiology of the cacao tree. Braz J Plant Physiol 19:425–448

    Article  Google Scholar 

  • Aloui A, Recorbet G, Gollotte A, Robert F, Valot B, Gianinazzi-Pearson V, Aschi-Smiti S, Dumas-Gaudot E (2009) On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study. Proteomics 9:420–433

    Article  CAS  Google Scholar 

  • Amudha J, Balasubramani G (2011) Recent molecular advances to combat abiotic stress tolerance in crop plants. Biotechnol Mol Biol Rev 6(2):31–58

    CAS  Google Scholar 

  • Anjum NA, Sharma P, Gill SS et al. (2016) Catalase and ascorbate peroxidase representative H2O2-detoxifying heme enzymes in plants. Environ Sci Pollut Res 23:19002–19029

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biotechnol 55:373–399

    Article  CAS  Google Scholar 

  • Araújo RP et al. (2017) Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotoxicol Environ Saf 144:148–157

    Article  CAS  Google Scholar 

  • Arena C, Figlioli F, Sorrentino MC, Izzo LG, Capozzi F, Giordano S, Spagnuolo V (2017) Ultrastructural, protein and photosynthetic alterations induced by Pb and Cd in Cynara cardunculus L., and its potential for phytoremediation. Ecotoxicol Environ Saf 145:83–89

    Article  CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Bertolde FZ, Almeida A-AF, Silva FAC, Oliveira TM, Pirovani CP (2014) Efficient method of protein extraction from Theobroma cacao L. roots for two-dimensional gel electrophoresis and mass spectrometry analyses. Genet Mol Res 13(3):5036–5047

    Article  CAS  Google Scholar 

  • Bertoldi D, Barbero A, Camin F, Caligiani A, Larcher R (2016) Multielemental fingerprinting and geographic traceability of Theobroma cacao beans and cocoa products. Food Control 65:46–53

    Article  CAS  Google Scholar 

  • Boucher N, Carpentier R (1999) Hg2+, Cu2+, and Pb2+-induced changes in Photosystem II photochemical yield and energy storage in isolated thylakoid membranes: a study using simultaneous fluorescence and photoacoustic measurements. Photosynth Res 59:167–174

    Article  CAS  Google Scholar 

  • Boza EJ, Motamayor JC, Amores FM, Amador SC, Tondo CL, Livingstone DS, Schnell RJ (2014) Genetic characterization of the cacao cultivar CCN 51: its impact and significance on global cacao improvement and production. J Am Soc Hort Sci 139(2):219–229

    Article  CAS  Google Scholar 

  • Cao F, Chen F, Sun H, Zhang G, Chen ZH, Wu F (2014) Genome-wide transcriptome and functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley. BMC Genom 15:611

    Article  CAS  Google Scholar 

  • Carneiro JMT, Chacón-Madrid K, Galazzi RM, Campos BK, Arruda SCC, Azevedo RA, Arruda MAZ (2017) Evaluation of silicon influence on the mitigation of cadmium-stress in the development of Arabidopsis thaliana through total metal content, proteomic and enzymatic approaches. J Trace Elem Med Biol 44:50–58

    Article  CAS  Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol 73:844–848

    Article  CAS  Google Scholar 

  • Chavez E, He ZL, Stoffella PJ, Mylavarapub RS, Li YC, Moyanod B, Baligar VC (2015) Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Sci Total Environ 533:205–214

    Article  CAS  Google Scholar 

  • Cheng Z-W, Chen Z-Y, Yan X, Bian Y-W, Deng X, Yan Y-M (2018) Integrated physiological and proteomic analysis reveals underlying response and defense mechanisms of Brachypodium distachyon seedling leaves under osmotic stress, cadmium and their combined stresses. J Proteom 170:1–13

    Article  CAS  Google Scholar 

  • Chora S, Starita-Geribaldi M, Guigonis J-M, Samson M, Bebianno MJ (2009) Effect of cadmium in the clam Ruditapes decussatus assessed by proteomic analysis. Aquat Toxicol 94:300–308

    Article  CAS  Google Scholar 

  • Ciechanover A (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79(1):13–21

    Article  CAS  Google Scholar 

  • Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynthesis Res 7:31–40

    Article  CAS  Google Scholar 

  • Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, Van Sanden S, Van Belleghem F et al. (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168:309–316

    Article  CAS  Google Scholar 

  • Dalcorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50:1268–1280

    Article  CAS  Google Scholar 

  • D’alessandro A, Taamalli M, Gevi F, Timperio AM, Zolla L, Ghnaya T (2013) Cadmium stress responses in Brassica juncea: hints from proteomics and metabolomics. J Proteome Res 12(11):4979–4997

    Article  CAS  Google Scholar 

  • Dechen AR, Nachtigall GR (2006) Micronutrientes. In: Fernades MS (ed). Nutrição mineral de plantas. Viçosa, MG, Sociedade Brasileira de Ciência do Solo, pp 328–352

  • Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C (2013) Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant 35:1281–1289

  • Dong L, Zhang D, Fan S, Jiang L et al. (2015) Overexpression of soybean isoflavone reductase (GmIFR) enhances resistance to Phytophthora sojae in soybean. Front Plant Sci 6:1024

    Google Scholar 

  • Durand TC, Sergeant K, Planchon S, Carpin S, Label P, Morabito D, Hausman J-F, Renaut J (2010) Acute metal stress in Populus tremula x P. alba (7171B4 genotype): leaf and cambial proteome changes induced by cadmium 2+. Proteomics 10(3):349–468

    Article  CAS  Google Scholar 

  • Eckmekçi Y, Tanyolaç D, Ayhan B (2008) Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Plant Physiol 165:600–611

    Article  CAS  Google Scholar 

  • European Commission (2014) Commission Regulation (EU) No 488/2014 of 12 May 2014 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in foodstuffs (Text with EEA relevance), European Commission, Brussels

  • Fan J, Zhang Y-Q, Li P, Hou M, Tan L, Wang X, Zhu Y-S (2004) Interaction of plasminogen activator inhibitor-2 and proteasome subunit, beta type 1. Acta Biochim Biophys Sin 36(1):42–46

  • Fauziah CI, Rozita O, Zauyah S, Anuar AR, Sham-shuddin J (2001) Heavy metals content in soils of Peninsular Malaysia grown with cocoa and in cocoa tissues. Malay J Soil Sci 5:47–58

  • Führs H, Hartwig M, Molina L, Heintz D, Van Dorsselaer A, Braun H et al. (2008) Early manganese-toxicity response in Vigna unguiculata L.—a proteomic and transcriptomic study. Proteomics 8:149–159

    Article  CAS  Google Scholar 

  • Gramlich A, Tandy S, Gauggel C, López M, Perla D, Gonzalez V, Schulin, R (2017) Soil cadmium uptake by cocoa in honduras. (In press)

  • He S, He Z, Yang X, Stoffella PJ, Baligar VC (2015) Soil biogeochemistry, plant physiology and phytoremediation of cadmium contaminated soils. In: Sparks DL (ed). Adv Agr 134:135–225

  • Henkes S, Sonnewald U, Badur R, Flachmann R, Stitt M (2001) A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell 13:535–551

  • Herrmann C, Wendt J, Köppen U, Kralj J, Feige KD (2015) Changes in the migration pattern of the Great Cormorant Phalacrocorax carbo sinensis from the 1930s until today. Vogelwarte 53:139–154

  • Hilt W, Wolf DH (1996) Proteasomes: destruction as a programmol/Le. Trends Biochem Sci 21(3):96–102

    Article  CAS  Google Scholar 

  • Hochstrasser M (1995) Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol 7(2):215–223

    Article  CAS  Google Scholar 

  • Hossain Z, Hajika M, Komatsu S (2012) Comparative proteome analysis of high and low cadmium accumulating soybeans under cadmium stress. Amino Acids 43:2393–2416

    Article  CAS  Google Scholar 

  • Hradilova J, Rehulka P, Rehulková H, Vrbová M, Griga M, Brzobohatý B (2010) Comparative analysis of proteomic changes in contrasting flax cultivars upon cadmium exposure. Electrophoresis 31:421–431

    Article  CAS  Google Scholar 

  • Huamani H, Huauya MA, Mansilla L, Florida N, Neira G (2012) Presence of heavy metals in organic cacao (Theobroma cacao L.) crops. Acta Agron 61:309–314

    Google Scholar 

  • Júnior CAL, Barbosa HS, Galazzi RM, Koolen HHF, Gozzo FC, Arruda MAZ (2015) Evaluation of proteome alterations induced by cadmium stress in sunflower (Helianthus annuus L.) cultures. Ecotoxicol Environ Saf 119:170–177

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace Elements in Soils and Plants, 3rd ed.

  • Kanazawa H, Futai M (1982) Structure and function of h + -atpase: what we have learned from Escherichia coli H + -ATPase. Ann N Y Acad Sci 402(1):45–64

  • Kieffer P, Dommes J, Hoffmann L, Hausman J-F, Renaut J (2008) Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics 8:2514–2530

    Article  CAS  Google Scholar 

  • Kieffer P, Schroder J, Dommes J, Hoffmann L, Renaut J, Hausman J-F (2009) Proteomic and enzimatic response of poplor to cadmium stress. J Proteom 72:379–396

    Article  CAS  Google Scholar 

  • Kim SG, Kim ST, Kang SY, Wang Y, Kim W, Kang KY (2008) Proteomic analysis of reactive oxygen species (ROS)-related proteins in rice roots. Plant Cell Rep. 27(2):363–375

    Article  CAS  Google Scholar 

  • Kim SG, Kim ST, Wang Y, Kim SK, Lee CH, Kim KK, Kim JK, Lee SY, Kang KY (2010) Overexpression of rice isoflavone reductase-like gene (OsIRL) confers tolerance to reactive oxygen species. Physiologia Plant 138(1):1–9

    Article  CAS  Google Scholar 

  • Kim ST, Cho KS, Kim SG, Kang SY, Kang KY (2003) A rice isoflavone reductase-like gene, OsIRL, is induced by rice blast fungal elicitor. Mol Cells 16(2):224–231

    CAS  Google Scholar 

  • Komatsu S, Hossain Z (2013) Organ-specific proteome analysis for identification of abiotic stress response mechanism in crop. Front Plant Sci 4:71

    Google Scholar 

  • Kuo WY, Huang CH, Liu AC, Cheng CP, Li SH, Chang WC et al. (2013) Chaperonin 20 mediates iron superoxide dismutase (FeSOD) activity independent of its cochaperonin role in Arabidopsis chloroplasts. N. Phytol 197:99–110

    Article  CAS  Google Scholar 

  • Küpper H, Šetlík I, Spiller M, Küpper FC, Prášil O (2002) Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J Phycol 38:429–441

    Google Scholar 

  • Kurepa J, Toh-E A, Smalle JA (2008) 26S proteasome regulatory particle mutants have increased oxidative stress tolerance. Plant J 53(1):102–114

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  Google Scholar 

  • Larsen CN, Finley D (1997) Protein translocation channels in the proteasome and other proteases. Cell 91(4):431–434

    Article  CAS  Google Scholar 

  • Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P (2006) F-box proteins everywhere. Curr Opin Plant Biol 9(4):8–631

    Google Scholar 

  • Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC, Lim CO, Lee SY, Chung WS (2010) Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physiol 167(3):161–168

    Article  CAS  Google Scholar 

  • Less H, Angelovici R, Tzin V, Galili G (2011) Coordinated gene networks regulating Arabidopsis plant metabolism in response to various stresses and nutritional cues. Plant Cell 23(4):1264–1271

    Article  CAS  Google Scholar 

  • Lim H, Cho MH, Jeon JS, Bhoo SH, Kwon YK, Hahn TR (2009) Altered expression of pyrophosphate:fructose-6-phosphate 1-phosphotransferase affects the growth of transgenic Arabidopsis plants. Mol Cells 27(6):641–649

    Article  CAS  Google Scholar 

  • Liu H, Zhang Y, Chai T, Tan J, Wang J, Feng S, Liu G (2013) Manganese-mitigation of cadmium toxicity to seedling growth of Phytolacca acinosa Roxb. is controlled by the manganese/cadmium molar ratio under hydroponic conditions. Plant Physiol Biochem 73:144–153

    Article  CAS  Google Scholar 

  • Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16):3448–3449

    Article  CAS  Google Scholar 

  • Moulis JM, Thevenod F (2010) New perspectives in cadmium toxicity: an in- troduction. Biometals, 23(5):763–768

  • Mounicou S, Szpunar J, Andrey D, Blake C, Lobinski R (2003) Concentrations and bioavailability of cadmium and lead in cocoa powder and related products. Food Addit Contam 20:343–352

  • Nascimento SV, Magalhães MM, Cunha RL, Costa PHO, Alves RCO, Oliveira GC, Valadares RBS (2018) Differential accumulation of proteins in oil palms affected by fatal yellowing disease. PLoS ONE 13(4):e0195538

    Article  CAS  Google Scholar 

  • Neuhoff V et al. (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    Article  CAS  Google Scholar 

  • Nordberg GF (2009) Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol 238:192–200.

  • Ouyang J, Guo W, Li B, Gu L, Zhang H, Chen X (2016) Erratum to “Proteomic analysis of differential protein expression in Acidithiobacillus ferrooxidans cultivated in high potassium concentration”. [Microbiol Res 168 (7) (2013) 455–460]. Microbiological Res 182:163–168

  • Paquis S, Mazeyrat-Gourbeyre F, Fernandez O, Crouzet J, Clément C, Baillieul F, Dorey S (2011) Characterization of a F-box gene up-regulated by phytohormones and upon biotic and abiotic stresses in grapevine. Mol Biol Rep. 38:3327–3337

    Article  CAS  Google Scholar 

  • Pendias K, Pendias H (1992) Trace elements in soils and plants. CRR Press, USA, pp 365

  • Peng K, Luo C, You W, Lian C, Li X, Shen Z (2008) Manganese uptake and interactions with cadmium in the hyperaccumulator—Phytolacca Americana L. J Hazard Mater 154:674–681

    Article  CAS  Google Scholar 

  • Pinto AP, Mota AM, De Varennes A, Pinto FC (2004) Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci Tot Environ 326:239–247

    Article  CAS  Google Scholar 

  • Pirovani CP, Carvalho HA, Machado RC, Gomes DS, Alvim FC, Pomella AW, Gramacho KP, Cascardo JC, Pereira GA, Micheli F (2008) Protein extraction for proteome analysis from cacao leaves and meristems, organs infected by Moniliophthora perniciosa, the causal agent of the witches’ broom disease. Electrophoresis 29:2391–2401

    Article  CAS  Google Scholar 

  • Rao J, Lv W, Yang J (2017) Proteomic analysis of saffron (Crocus sativus L.) grown under conditions of cadmium toxicity. Biosci J 33(3):713–720

    Article  Google Scholar 

  • Rojas CM, Senthil-Kumar M, Tzin V, Mysore KS (2014) Regulation of primary plant metabolism during plantpathogen interactions and its contribution to plant defense. Front Plant Sci 5:17

    Article  Google Scholar 

  • Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41(2):105–130

    Article  Google Scholar 

  • Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V et al. (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored byprotein and metabolite profiling analyses. Proteomics 6:2180–2198

    Article  CAS  Google Scholar 

  • Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38(7):995–1014

    Article  CAS  Google Scholar 

  • Scheideler M, Schlaich NL, Fellenberg K, Beissbarth T, Hauser NC, Vingron M et al. (2002) Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA arrays. J Biol Chem 277(12):10555–10561

    Article  CAS  Google Scholar 

  • Schmidt SB et al. (2013) Latent manganese deficiency in barley can be diagnosed and remediated on the basis of chlorophyll a fluorescence measurements. Plant Soil 372:417–429

    Article  CAS  Google Scholar 

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48:523–544

    Article  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  Google Scholar 

  • Shoji T, Winz R, Iwase T, Nakajima K, Yamada Y, Hashimoto T (2002) Expression patterns of two tobacco isoflavone reductase-like genes and their possible roles in secondary metabolism in tobacco. Plant Mol Biol 50:427–440

    Article  CAS  Google Scholar 

  • Singh RP, Agrawal M (2007) Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere 67(11):2229–2240

  • Souza Júnior JO (2007) Substratos e adubação para mudas clonais de cacaueiro. Tese (Doutorado). ESALQ/USP, Piracicaba

  • Tanyolaç D, Ekmekçi Y, Ünalan Ş (2007) Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere 67:89–98

    Article  CAS  Google Scholar 

  • Villiers F, Ducruix C, Hugouvieux V, Jarno N, Ezan E, Garin J, Junot C, Bourguignon J (2011) Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11:1650–1663

    Article  CAS  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    Article  CAS  Google Scholar 

  • White PJ, Greenwood DJ (2013) Properties and management of cationic elements for crop growth. In: Gregory PJ, Nortcliff S (eds) Soil conditions and plant growth. Blackwell Publishing, Oxford, 160–194

    Chapter  Google Scholar 

  • Wu F, Zhang G, Yu J (2003) Interaction of cadmium and four microelements for uptake and translocation in different barley genotypes. Commun Soil Sci Plant Anal 34:2003–2020

    Article  CAS  Google Scholar 

  • Yamaguchi M, Valliyodan B, Zhang J, Lenoble ME, Yu O, Rogers EE, Nguyen HT, Sharp RE (2010) Regulation of growth response to water stress in the soybean primary root. I. Proteomic analysis reveals region-specific regulation of phenylpropanoid metabolism and control of free iron in the elongation zone. Plant Cell Environ 33:223–243

    Article  CAS  Google Scholar 

  • You X, Yang Lt, Lu Yb et al. (2014) Proteomic changes of Citrus roots in response to long-term manganese toxicity. Trees 28:1383

    Article  CAS  Google Scholar 

  • Zhang F, Shi W, Jin Z, Shen Z (2003) Response of oxidative enzymes in cucumber chloroplasts to cadmium toxicity. J Plant Nutr 26:1779–1788

    Article  CAS  Google Scholar 

  • Zhang S, Zhang L, Zhou K, Li Y, Zhao Z (2017) Changes in protein profile of Platycladus orientalis (L.) roots and leaves in response to drought stress. Tree Genet Genomes 13:76

    Article  Google Scholar 

  • Zhang W, Ruan J, Ho T-hD, You Y, Yu T, Quatrano RS (2005) Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana. Bioinformatics 21(14):3074–3081

    Article  CAS  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    Article  CAS  Google Scholar 

  • Zornoza P, Sánchez-Pardo B, Carpena RO (2010) Interaction and accumulation of manganese and cadmium in the manganese accumulator Lupinus albus. J Plant Physiol 167:1027–1032

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank the Fundação de Amparo à Pesquisa do Estado da Bahia—FAPESB. The project SCA 58-1245-3-237F and SCA 58-8042-8-014F of USDA-ARS-FUNPAB partially supported the laband greenhouse activities. The second author gratefully acknowledges the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, for the concession of a fellowship of scientific productivity. We thank Marshall Elson for excellent review of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bruna Rafaela Machado Oliveira or Alex-Alan Furtado de Almeida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, B.R.M., de Almeida, AA.F., Pirovani, C.P. et al. Mitigation of Cd toxicity by Mn in young plants of cacao, evaluated by the proteomic profiles of leaves and roots. Ecotoxicology 29, 340–358 (2020). https://doi.org/10.1007/s10646-020-02178-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-020-02178-4

Keywords

Navigation