Skip to main content
Log in

Fipronil (Phenylpyrazole) induces hemato-biochemical, histological and genetic damage at low doses in common carp, Cyprinus carpio (Linnaeus, 1758)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

This study was conducted to investigate the toxic effects of fipronil on common carp (Cyprinus carpio). The trial was performed in laboratory of Department of Life Sciences at the Islamia University of Bahawalpur, Punjab, Pakistan. Total of 72 fishes, with apparently no clinical signs were purchased from local fish hatchery near Bahawalpur, Punjab, Pakistan. After 2 weeks of acclimatization fish were divided into six groups in glass aquaria (each having 100 liters of water capacity) and treated with different concentrations of fipronil for 12 days: 0 mg/L—control group (A),0.02 mg/L (B),0.04 mg/L (C),0.06 mg/L (D),0.08 mg/L (E) and 0.10 mg/L (F). Blood samples were taken every 4 days for evaluation of hemato-biochemical parameters. Fish in high doses treated groups show severe abnormalities in clinical-hematological and biochemical parameters. At high dose in group E and F fish show clinical ailments such as convulsions, jerking, faintness, increase in operculum movement, body curvature and breathing difficulty. Erythrocyte count, hemoglobin, hematocrit were decreased significantly (P < 0.05) and mean corpuscular volume, total leukocyte count, neutrophils, monocytes, and lymphocytes were significantly increased. Biochemical parameters including urea, creatinine, cholesterol, triglyceride, glucose were significantly increased but albumin was significantly decreased. Nuclear and cellular abnormalities were also increased in high dose treated groups. Hence fipronil induces clinico-hematological and serum biochemical changes in common carp C. carpio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Latif HMR, Khashaba AMA (2017) Subchronic toxicity of Nile tilapia with different exposure routes to Microcystisaeruginosa: histopathology, liver functions, and oxidative stress biomarkers. Vet World 10:955–963. https://doi.org/10.14202/vetworld.2017.955-963

    Article  CAS  Google Scholar 

  • Aliaa IM, Azza GM, Gehad EM (2011) Histological hazards of Chlorpyrifos usage on gills and kidneys of Tilapia nilotica and the role of vitamin E supplement. Egypt Life Sci J 8(4):113–123

    Google Scholar 

  • Amaroli A, Gallus L, Ferrando S (2018) Permethrin drastically affects the developmental cycle of the non-target slime mould Dictyosteliumdiscoideum. Chemosphere 193:1–7. https://doi.org/10.1016/j.chemosphere.2017.10.127

    Article  CAS  Google Scholar 

  • Ardeshir AR, Zolgharnein H, Movahedinia AA, Salamat N, Zabihi E, Regenstein J (2017) Intraperitonealfipronil effects on liver histopathological, biochemistry and morphology in Caspian kutum, Rutilusfrisiikutum (Kamenskii, 1901). Glob J Environ Sci Manag 3(4):351–362. https://doi.org/10.22034/gjesm.2017.03.04.002

    Article  CAS  Google Scholar 

  • Arslan H, Özdemir S, Altun S (2017) Cypermethrintoxication leads to histopathological lesions and induces inflammation and apoptosis in common carp (Cyprinuscarpio L.). Chemosphere 180:491–499. https://doi.org/10.1016/j.chemosphere.2017.04.057

    Article  CAS  Google Scholar 

  • Badgujar PC, Pawar NN, Chandratre GA, Telang AG, Sharma AK (2015) Fipronil induced oxidative stress in kidney and brain of mice: protective effect of vitamin E and vitamin C. PesticBiochemPhys 118:10–18. https://doi.org/10.1016/j.pestbp.2014.10.013

    Article  CAS  Google Scholar 

  • Barbee GC, Stout MJ (2009) Comparative acute toxicity of neonicotinoid and pyrethroid insecticides to non-target crayfish (Procambarus clarkii) associated with rice crayfish crop rotations. Pest Manag Sci 65:1250–1256

    Article  CAS  Google Scholar 

  • Bhanu AP, Deepak M (2015) Impact of cypermethrin on biochemical aspects of clinical importance in the blood of freshwater fish Cyprinuscarpio. J EntomolZool Stud 3(1):126–128

    Google Scholar 

  • Bhuvaneshwari R, Padmanaban K, Rajendran RB (2015) Histopathological alterationsin muscle, Liver and gill tissues of zebrafish Daniorerio due to environmentally relevant concentrations of organochlorinepesticides (OCPs) and heavy metals. IntJ EnvironRes 9(4):1365–1372. https://doi.org/10.22059/IJER.2015.1029

    Article  CAS  Google Scholar 

  • Blahova J, Modra H, Sevcikova M, Marsalek P, Zelnickova L, Skoric M, Svobodova Z (2014) Evaluation of biochemical, haematological, and histopathological responses and recovery ability of common carp (Cyprinuscarpio L.) after acute exposure to atrazine herbicide. BioMedRes Int, 2014. https://doi.org/10.1155/2014/980948

    Article  Google Scholar 

  • Bonmatin JM, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, Marzaro M, Mitchell EA, Noome DA, Simon-Delso N, Tapparo A (2015) Environmental fate and exposure; neonicotinoids and fipronil. Environ SciPollut Resin 22(1):35–67. https://doi.org/10.1007/s11356-014-3332-7

    Article  CAS  Google Scholar 

  • Campos-Garcia J, Martinez DS, Rezende KF, da Silva JR, Alves OL, Barbieri E (2016) Histopathological alterations in the gills of Nile tilapia exposed to carbofuran and multiwalled carbon nanotubes. EcotoxicolEnviron Saf 133:481–488. https://doi.org/10.1016/j.ecoenv.2016.07.041

    Article  CAS  Google Scholar 

  • Chagnon M, Kreutzweiser D, Mitchell EAD, Morrissey CA, Noome DA, Sluijs Van Der JP (2014) Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res 22(119):134

    Google Scholar 

  • Doherty VF, Ladipo MK, Aneyo IA, Adeola A, Odulele WY (2016) Histopathological alterations, biochemical responses and acetylcholinesterase levels in Clariasgariepinus as biomarkers of exposure to organophosphates pesticides. Environ Monit Assess 188(5):312. https://doi.org/10.1007/s10661-016-5299-y

    Article  CAS  Google Scholar 

  • El-Murr A, Imam TS, Hakim Y, Ghonimi WAM (2015) Histopathological, immunological, hematological and biochemical effects of fipronilon Nile tilapia (Oreochromisniloticus). JVeterinarSciTechnol 6:5. https://doi.org/10.4172/2157-7579.1000252

    Article  CAS  Google Scholar 

  • Ghaffar A, Hussain R, Abbas G, Ali MH, Saleem M, Khan T, Malik R, Ahmad H (2017a) Cumulative effects of sodium arsenate and diammoniumphosphate on growth performance, hemato-biochemistry and protoplasm in commercial layer. Pak Vet J 37(3):257–262

    Google Scholar 

  • Ghaffar A, Hussain R, Abbas G, Ahmad MN, Abbas A, Rahim Y, Younus M, Shahid M, Mohiuddin M (2017b) Sodium arsenate and/or urea differently affect clinical attributes, hemato-biochemistry and DNA damage in intoxicated commercial layer birds. Toxin Rev 37(3):206–215

    Article  Google Scholar 

  • Ghaffar A, Hussain R, Abbas G, Ali MH, Ahmed H, Nawaz J, Choudhary IR, Haneef J, Khan S (2017c) Arsenic and copper sulfate in combination causes testicular and serum biochemical changes in White Leghorn cockerels. Pak Vet J 37(4):375–380

    Google Scholar 

  • Ghaffar A, Hussain R, Aslam M, Abbas G, Khan A (2016) Arsenic and urea in combination alters the hematology, biochemistry and protoplasm in exposed rahufish (Labeorohita) (Hamilton, 1822). Turk J Fish Aquat Sci 16:289–296. https://doi.org/10.4194/1303-2712-v16_2_09

    Article  Google Scholar 

  • Ghaffar A, Hussain R, Khan A, Abbas RZ, Asad M (2015a) Butachlor induced clinic-hematological and cellular changes in fresh water fish Labeorohita (Rohu). Pak Vet J 35:201–206

    Google Scholar 

  • Ghaffar A, Hussain R, Khan A, Abbas RZ (2015b) Hemato-biochemical and genetic damage caused by triazophos in fresh water fish, Labeorohita. Int J Agric 17:637–642. https://doi.org/10.17957/IJAB/17.3.14.1016

    Article  CAS  Google Scholar 

  • Ghisi Nde C, Ramsdorf WA, Ferraro MV, de Almeida MI, Ribeiro CA, Cestari MM (2011) Evaluation of genotoxicity in Rhamdia quelen (Pisces, Siluriformes) after sub-chronic contamination with Fipronil. Environ Monit Assess 180(1-4):589–599

    Article  Google Scholar 

  • Gibbons D, Morrissey C, Mineau P (2015) A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Ecotoxicol Environ Saf 22(1):103–118

    CAS  Google Scholar 

  • Gripp HS, Freitas JS, Almeida EA, Bisinoti MC, Moreira AB (2017) Biochemical effects of fipronil and its metabolites on lipid peroxidation and enzymatic antioxidant defense in tadpoles (Eupemphixnattereri: Leiuperidae). Ecotoxicol Environ Saf 136:173–179. https://doi.org/10.1016/j.ecoenv.2016.10.027

    Article  CAS  Google Scholar 

  • Gul ST, Khan A, Farooq M, Niaz S, Ahmad M, Khatoon A, Hussain R, Saleemi MK, Hassan MF (2017) Effect of sub lethal doses of thiamethoxam (a pesticide) on hemato-biochemical values in cockerels. Pak Vet J 37(2):135–138

    CAS  Google Scholar 

  • Gupta SK, Pal AK, Sahu NP, Saharan N, Mandal SC, Prakash C, Akhtar MS, Prusty AK (2014) Dietary microbial levan ameliorates stress and augments immunity in Cyprinus carpio fry (Linnaeus, 1758) exposed to sublethal toxicity of fipronil. Aquac Res 45:893–906

    Article  CAS  Google Scholar 

  • Hussain R, Ghaffar A, Ali HM, Abbas RZ, Khan JA, Khan IA, Ahmad I, Iqbal Z (2017) Analysis of different toxic impacts of fipronil on growth, hemato-biochemistry, protoplasm and reproduction in adult cockerels. Toxin Rev, https://doi.org/10.1080/15569543.2017.1366921

  • Hussain R, Khan A, Mahmood F, Rehan S, Ali F (2014) Clinicohematological and tissue changes induced by butachlor in male Japanese quail (Coturnix japonica). PesticBiochemPhysiol 109:58–63. https://doi.org/10.1016/j.pestbp.2014.01.005

    Article  CAS  Google Scholar 

  • Hussain R, Mahmood F, Khan A, Javed MT, Rehan S, Mehdi T (2012) Cellular and biochemical effects induced by atrazine on blood of male Japanese quail (Coturnix japonica). PesticBiochemPhysiol 103(1):38–42. https://doi.org/10.1016/j.pestbp.2012.03.001

    Article  CAS  Google Scholar 

  • Hussain R, Mahmood F, Khan A (2015) Genotoxic and pathological effects of malathion in male Japanese quail (Coturnix japonica). Pak J Agric Sci 52(4):1149–1156

    Google Scholar 

  • Jan R, Sadique U, Hassan ZU, Farid K, Ahmad S, Khan S, Khan H (2017) Toxicopathological and reproductive effects of concurrent oral administration of ochratoxin A and endosulfan in pregnant rabbits (Oryctolagus cuniculus). Pak Vet J 37(1):19–24

    CAS  Google Scholar 

  • Khan NM, Shahzad K, Chatta A, Sohail M, Piria M, Treer T (2016) A review of introduction of common carp Cyprinus carpio in Pakistan: origin, purpose, impact and management. Croat J Fish 74:71–80. https://doi.org/10.1515/cjf-2016-0016

    Article  Google Scholar 

  • Kumar N, Ambasankar K, Krishnani KK, Gupta SK, Bhushan S, Minhas PS (2016) Acute toxicity, biochemical and histopathological responses of endosulfan in Chanoschanos. EcotoxicolEnvironmSaf 131:79–88. https://doi.org/10.1016/j.ecoenv.2016.05.013

    Article  CAS  Google Scholar 

  • Lim S, Ahn SY, Song IC, Chung MH, Jang HC (2009) Chronic exposure to the herbicide, atrazine, causes mitochondrial dysfunction and insulin resistance. PLoS One 4(4):e5186. https://doi.org/10.1371/journal.pone.0005186

    Article  CAS  Google Scholar 

  • Marcon L, Lopes DS, Mounteer AH, Goulart AM, Leandro MV, Dos Anjos, Benjamin L (2016) Pathological and histometric analysis of the gills of female Hyphessobryconeques (Teleostei:Characidae) exposed to different concentrations of the insecticide Dimilin(®). Ecotoxicol Environ Saf 131:135–142. https://doi.org/10.1016/j.ecoenv.2016.05.016

    Article  CAS  Google Scholar 

  • Menezes C, Leitemperger J, Murussi C, de Souza Viera M, Adaime MB, Zanella R, Loro VL (2016) Effect of diphenyldiselenide diet supplementation on oxidative stress biomarkers in two species of freshwater fish exposed to the insecticide fipronil. Fish PhysiolBiochem 42(5):1357–1368. https://doi.org/10.1007/s10695-016-0223-5

    Article  CAS  Google Scholar 

  • Metre PCV, Alvarez DA, Mahler BJ, Nowell L, Sandstrom M, Moran P (2017) Complex mixtures of pesticides in midwestUS streams indicated by POCIS time-integrating samplers. EnvironPollut 220:431–440. https://doi.org/10.1016/j.envpol.2016.09.085

    Article  CAS  Google Scholar 

  • Mohammadalikhani M, Lameeihassankiadeh S, Lashgari SN, Abbasian F (2017) Acute toxicity of captanon blood factors total immunoglobulin, liver, and gill tissues of fingerling grass carps: Ctenopharyngodonidella. JChem Health Risks 7(1):77–84

    CAS  Google Scholar 

  • MostafalouS AM (2013) Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. ToxicolApplPharmacol 268:157–177. https://doi.org/10.1016/j.taap.2013.01.025

    Article  CAS  Google Scholar 

  • Narra MR (2016) Single and cartel effect of pesticides on biochemical and haematological status of Clasiasbatrachus: a long term monitoring. Chemosphere 144:966–974. https://doi.org/10.1016/j.chemosphere.2015.09.065

    Article  CAS  Google Scholar 

  • Narra MR, Rajender K, Reddy RR, Murty US, Begum G (2017) Insecticides induced stress response and recuperation in fish: biomarkers in blood and tissues related to oxidative damage. Chemosphere 168:350–357. https://doi.org/10.1016/j.chemosphere.2016.10.066

    Article  CAS  Google Scholar 

  • Neelima P, Cyril L, Kumar Arun J, Rao CS, Rao NG (2015) Histopathologicalalterations in gill, liver and kidney of Cyprinuscarpio (Linn.) exposed to Cypermethrin (25%EC). IntJ Adv Res BiolSci 2(2):34–40

    CAS  Google Scholar 

  • Noga EJ (2010) Fish disease diagnosis and treatment, 2nd Edition. Wiley-Blackwell, Ames, Iowa, USA

    Book  Google Scholar 

  • Pal S, Kokushi E, Koyama J, Uno S, Ghosh AR (2012) Histopathological alterations in gill, liver and kidney of common carp exposed to chlorpyrifos. J Environ Sci Health Part B 47(3):180–195. https://doi.org/10.1080/03601234.2012.632285

    Article  CAS  Google Scholar 

  • Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Downs CA, Goulson D, Kreutzweiser DP, Krupke C, Liess M, McField M, Morrissey CA, Noome DA, Settele J, Simon-Delso N, Stark JD, Van der Sluijs JP, Van Dyck H, Wiemers M (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environ SciPollut Resin 22(1):68–102. https://doi.org/10.1007/s11356-014-3471-x

    Article  CAS  Google Scholar 

  • Qureshi IZ, Bibi A, Shahid S, Ghazanfar M (2016) Exposure to sub-acute doses of fipronil and buprofezin in combination or alone induces biochemical, hematological, histopathological and genotoxic damage in common carp (Cyprinuscarpio L.). AquatToxicol 179:103–114. https://doi.org/10.1016/j.aquatox.2016.08.012

    Article  CAS  Google Scholar 

  • Selvi RT, Ilavazhahan M (2012) Histopathologicalchanges in gill tissue of the fish Catlacatlaexposed to sublethalconcentration of pesticide methyl parathion and a heavy metal feroussulphate. BiomedPharmacolJ 5:305–312

    CAS  Google Scholar 

  • Velmurugan B, Cengiz EI, Senthilkumaar P, Uysal E, Satar A (2016) Hematological parameters of freshwater fish Anabas testudineusafter sublethalexposure to Cypermethrin. Environ Pollut Prot 1(1):32–39. https://doi.org/10.22606/epp.2016.11004

    Article  Google Scholar 

  • Velmurugan B, Selvanayagam M, Cengiz EI, Unlu E (2009) Histopathologicalchanges in the gill and liver tissues of freshwater fish, Cirrhinusmrigalaexposed to dichlorvos. Braz Arch BiolTechnol 52:1291–1296. https://doi.org/10.1590/S1516-89132009000500029

    Article  Google Scholar 

  • Wang J, Liang W, Henkelmann B, Pfister G, Schramm K (2015) Organochlorine pesticides accumulated by SPMD-based virtual organisms and feral fish in three Gorges Reservoir, Chaina. Environ Pollut 202:160–167. https://doi.org/10.1016/j.envpol.2015.03.031

    Article  CAS  Google Scholar 

  • Wang C, Qian Y, Zhang X, Chen F, Zhang Q, Li Z, Zhao M (2016) A metabolomic study of fipronil for the anxiety-like behavior in zebrafish larvae at environmentally relevant levels. Environ Pollut 211:252–258. https://doi.org/10.1016/j.envpol.2016.01.016

    Article  CAS  Google Scholar 

  • Witeska MP, Sarnowski K, ŁugowskaK, Kowal E (2014) The effects of cadmium and copper on embryonic and larval development of ide Leuciscusidus L. Fish PhysiolBiochem 40:151–163. https://doi.org/10.1007/s10695-013-9832-4

    Article  CAS  Google Scholar 

  • Zheng N, Cheng J, Zhang W, Li W, Shao X, Xu Z, Xu X, Li Z (2014) Binding difference of fipronil with GABAARs in fruitfly and zebrafish: insights from homology modeling, docking, and molecular dynamics simulation studies. J Agric Food Chem 62(44):10646–10653. https://doi.org/10.1021/jf503851z

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Ferrando.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaffar, A., Hussain, R., Abbas, G. et al. Fipronil (Phenylpyrazole) induces hemato-biochemical, histological and genetic damage at low doses in common carp, Cyprinus carpio (Linnaeus, 1758). Ecotoxicology 27, 1261–1271 (2018). https://doi.org/10.1007/s10646-018-1979-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-018-1979-4

Keywords

Navigation