Skip to main content
Log in

Rapid ecotoxicological bioassay using delayed fluorescence in the marine cyanobacterium Cyanobium sp. (NIES-981)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The use of delayed fluorescence intensity as an endpoint for rapid estimation of the effective concentration (ECx) has been reported as an alternative to standard growth inhibition (at 72 h after exposure) in some algal species including Pseudokirchneriella subcapitata. In marine algae, although an approach of bioassaying using delayed fluorescence measurements has not been performed yet, its development would provide many benefits for marine environmental risk assessment. In this study, we selected marine cyanobacterium Cyanobium sp. (NIES-981) as our test algal species and demonstrated that this species is valid for the standard growth inhibition test based on criteria provide by Organization for Economic Co-operation and Development guidelines. Furthermore, standard inhibition tests and shorter period test using DF were performed in NIES-981 using five chemicals (3,5-DCP, simazine, diflufenican, K2Cr2O7, and CuSO4), and their EC50 and low-toxic-effect values (EC10, EC5, and NOEC) were determined from two dose-response curves. Based on comparisons of the two dose-response curves and the EC50 values, we conclude that DF intensity is useful as an endpoint for rapid estimation of EC50 in NIES-981.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnold W, Davidson JB (1954) The identity of the fluorescent and delayed light emission spectra in Chlorella. J Gen Physiol 37:677–684

    Article  CAS  Google Scholar 

  • Berden-Zrimec M, Drinovec L, Zrimec A (2010) Delayed fluorescence. In: Sugget, DJ, Prasil O, Borowitzka M (eds) Chlorophyll a fluorescence in aquatic sciences: Methods and applications. Springer, Dordrecht, pp 293–309

  • Burda K, Kruk J, Strzalka K, Schmid GH (2002) Stimulation of oxygene evolution in photosystem II by copper (II) ions. Z Naturforsch 57:853–857

    CAS  Google Scholar 

  • Comber MHI, Smyth DV, Thompson RS (1995) Assessment of the toxicity to algae of colored substances. Bull Environ Contam Toxicol 55:922–928

    Article  CAS  Google Scholar 

  • Conrad R, Büchel C, Wilhelm C, Arsalane W, Berkaloff C et al. (1993) Changes in yield of in-vivo fluorescence of chlorophyll a as a tool for selective herbicide monitoring. J Appl Phycol 5:505–516

    Article  CAS  Google Scholar 

  • Drinovec L, Drobne D, Jerman I, Zrimec A (2004) Delayed fluorescence of Lemna minor: a biomarker of the effects of copper, cadmium, and zinc. Bull Environ Contam Toxicol 72:896–902

    Article  CAS  Google Scholar 

  • Ebenezer V, Ki J (2013) Quantification of the sub-toxicity of metals and endocrine-disrupting chemicals to the marine green microalga Tetraselmis suecica. Fish Aquat Sci 16:187–194

    CAS  Google Scholar 

  • Escher BI, Bramaz N, Quayle P, Rutishauser S, Vermeirssen ELM (2008) Monitoring of the ecotoxicological hazard potential by polar organic micropolutants in sewage treatment plants and surface waters using a mode-of-action based test battery. J Environ Monit 10:622–631

    Article  CAS  Google Scholar 

  • Franklin NM, Stauber JL, Apte SC, Lim RP (2002) Effect of initial cell density of the bioavailability and toxicity of copper in microalgal bioassays. Environ Toxicol Chem 21:742–751

    Article  CAS  Google Scholar 

  • Gerhardt V, Kretsch G (1989) Development of a delayed fluorescence based biotest for detection of water pollutants. Dortmunder Beiträge zur Wasserforschung, Grundlagen und Anwendungsbereiche der Chlorophyllfluoreszenz; Veröffentlichungen des Instituts für Wassersforschung GmbH Dortmund und der Hydrobiologischen Abteilung der Dortmunder Stadtwerke AG 37:87–95

  • International Standard (ISO 10253:2006)(2006) Water quality–Marine algal growth inhibition test with Skeletonema costatum and Phaeodactylum tricornutum.

  • Joliot P, Joliot A, Bouges B, Barbieri G (1971) Studies of system-II photocenters by comparative measurements of luminescence, fluorescence, and oxygen emission. Photochem Photobiol 14:287–305

    Article  CAS  Google Scholar 

  • Jursinic PA (1986) Delayed fluorescence: current concepts and status. In: Govindjee JA, Fork DC (eds) Light emission by plants and bacteria. Academic Press, New York, pp 291–328

  • Kallqvist T, Romstad R (1994) Effects of agricultural pesticides on planktonic algae and cyanobacteria: examples of interspecies sensitivity variations. Norway J Agric Sci Suppl 13:117–131

    Google Scholar 

  • Kasai K, Kawachi M, Erata M, Mori F, Yumoto K, Ishimoto M (2009) NIES-Collection, List of strains, 8th edn. Jpn J Phycol 57:220

    Google Scholar 

  • Katsumata M, Koike T, Kazumura K, Takeuchi A, Sugaya Y (2009) Utility of delayed fluorescence as endpoint for rapid estimation of effect concentration on the green alga Pseudokirchneriella subcapitata. Bull Environ Contam Toxicol 83:484–487

    Article  CAS  Google Scholar 

  • Katsumata M, Koike T, Nishikawa M, Kazumura K, Tsuchiya H (2006) Rapid ecotoxicological bioassay using delayed fluorescence in the green alga Pseudokirchneriella subcapitata. Water Res 40:3393–3400

    Article  CAS  Google Scholar 

  • Kooijman SALM, Hanstveit AO, Nyholm N (1996) No-effect concentrations in algal growth inhibition tests. Water Res 30:1625–1632

    Article  Google Scholar 

  • Leunert F, Grossart HP, Gerhardt V, Eckert W (2013) Toxicant induced changes on delayed fluorescence decay kinetics of cyanobacteria and green algae: a rapid and sensitive biotest. Plos One 8:e63127

    Article  CAS  Google Scholar 

  • Mayer P, Frickmann J, Christensen ER, Nyholm N (1998) Influence of growth conditions on the results obtained in algal toxicity tests. Environ Toxicol Chem 1091–1098

  • Millán de Kuhn R, Streb C, Breiter R, Richter P, Neeβe T, Häber DP (2006) Screening for unicellular algae as possible bioassay organisms for monitoring marine water samples. Water Res 40:2695–2703

    Article  Google Scholar 

  • Okamura H, Aoyama I, Liu D, Maguire RJ, Pacepavicius GJ, Lau YL (2000) Fate and ecotoxicity of the new antifouling compound irgarol 1051 in the aquatic environment. Water Res 34:3523–3530

  • Organization for Economic Cooperation and Development (OECD) (1984) Guideline for testing of chemicals no. 201. Alga growth inhibition test, Pairs

  • Pérez J, Domingues I, Soares AMVM, Loureiro S (2011) Growth rate of Pseudokirchneriella subcapitata exposed to herbicides found in surface waters in the alqueva reservoir (Portugal): a bottom-up approach using binary mixtures. Ecotoxicology 20:1167–1175

    Article  Google Scholar 

  • Radix P, Léonard M, Papantoniou C, Roman G, Saouter E, Gallotti-Schmitt S, Thébaud H, Vasseur P (2000) Comparison of four chronic toxicity tests using algae, bacteria, and invertebrates assessed with sixteen chemicals. Ecotoxicol Environ Safety 47:186–194

    Article  CAS  Google Scholar 

  • Sbrilli G, Bimbi B, Cioni F, Pagliai L, Luchi F, Lanciotti E (2005) Surface and ground waters characterization in Tuscany (Italy) by using algal bioassay and pesticide determinations: comparative evaluation of the results and hazard assessment of the pesticides impact on primary productivity. Chemosphere 58:571–578

    Article  CAS  Google Scholar 

  • Schmidt W, Senger H (1987a) Long-term delayed luminescence in Scenedesmus obliquus I. Spectral and kinetics properties. Biochem Biophys 890:15–22

    CAS  Google Scholar 

  • Schmidt W, Senger H (1987b) Long-term delayed luminescence in Scenedesmus obliquus II. Influence of exogenous factors. Biochem Biophys 981:22–27

    Google Scholar 

  • Schreiber U, Muller JF, Haugg A, Gademann R (2002) New type of dual channel PAM chlorophyll fluorometer for highly sensitive water toxicity biotests. Photosynth Res 74:317–330

    Article  CAS  Google Scholar 

  • Shigeoka T, Sato Y, Takeda Y, Yoshida K, Yamauchi F (1988) Acute toxicity of chlorophenols to green algae, Selenastrum capricornutum and Chlorella vulgaris, and quantitative structure-activity relationships. Environ Toxicol Chem 7:847–854

    Article  CAS  Google Scholar 

  • Strehler BL, Arnold W (1951) Light production by green plants. J Gen Physiol 34:809–820

    Article  CAS  Google Scholar 

  • Thompson JA (1997) Cellular fluorescence capacity as an endpoint in algal toxicity testing. Chemosphere 35:2027–2037

    Article  CAS  Google Scholar 

  • Vallotton N, Iida R, Eggen L, Escher BI, Krayenbuhl J et al. (2008) Effect of pulse herbicidal exposure on Scenedesmus vacuoleatus: a comparison of two photosystem II inhibitors. Environ Toxicol Chem 27:1399–1407

    Article  CAS  Google Scholar 

  • Van der Hoeven N (1997) How to measure no effect. Part 1: towards a new measure of chronic toxicity. Environmentrics 8:241–248

    Article  Google Scholar 

  • Vignati DAL, Dominik J, Beye ML, Pettine M, Ferrari BJD (2010) Chromiumu (VI) is more toxic than chromium(III) to freshwater algae: a paradigm to revise. Ecotoxicol Environ Safety 73:743–749

  • Wang W, Gorsuch JW, Lower WR (eds) (1990) Plants for toxicity assessment. ASTM STP 1091, Philadelphia, PA, pp 40–48

    Book  Google Scholar 

  • Warne MJ, Dam R (2008) NOEC and LOEC data should no longer be generated or used. Australasian J Ecotoxicol 14:1–5

    Google Scholar 

  • Weyman GS, Rufli H, Eltje L, Salinas ER, Hamitou M (2012) Aquatic toxicity tests with substances that are poorly soluble in water and consequences for environmental risk assessment. Environ Toxicol Chem 31:1662–1669

    Article  CAS  Google Scholar 

  • Wyman M, Gregory RPF, Carr NG (1985) Novel role phycoerythrin in a marine cyanobacterium, Synechococcus strain DC2. Nature 230:818–820

    CAS  Google Scholar 

  • Yamaguchi H, Shimura Y, Suzuki S, Yamagishi T, Tatarazako N, Kawachi M (2016) Complete genome sequence of Cyanobium sp. NIES-981, a potentially useful marine strain for ecotoxicological bioassay. Genome Announc 4:e00736–16

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by Council for Science, Technology and innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Next-generation technology for ocean resources exploration”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihisa Tatarazako.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamagishi, T., Katsumata, M., Yamaguchi, H. et al. Rapid ecotoxicological bioassay using delayed fluorescence in the marine cyanobacterium Cyanobium sp. (NIES-981). Ecotoxicology 25, 1751–1758 (2016). https://doi.org/10.1007/s10646-016-1718-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-016-1718-7

Keywords

Navigation