Skip to main content
Log in

Estimating the DNA strand breakage using a fuzzy inference system and agarose gel electrophoresis, a case study with toothed carp Aphanius sophiae exposed to cypermethrin

  • Technical Note
  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The DNA breakage has been widely used in ecotoxicological studies to investigate effects of pesticides in fishes. The present study used a fuzzy inference system to quantify the breakage of DNA double strand in Aphanius sophiae exposed to the cypermethrin. The specimens were adapted to different temperatures and salinity for 14 days and then exposed to cypermethrin. DNA of each specimens were extracted, electrophoresed and photographed. A fuzzy system with three input variables and 27 rules were defined. The pixel value curve of DNA on each gel lane was obtained using ImageJ. The DNA breakage was quantified using the pixel value curve and fuzzy system. The defuzzified values were analyzed using a three-way analysis of variance. Cypermethrin had significant effects on DNA breakage. Fuzzy inference systems can be used as a tool to quantify the breakage of double strand DNA. DNA double strand of the gill of A. sophiae is sensitive enough to be used to detect cypermethrin in surface waters in concentrations much lower than those reported in previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Abdoli A (2000) The inland freshwater fishes of Iran. The Iranian Museum of Nature and Wildlife, Tehran

    Google Scholar 

  • Ahmed FE, Hart RW, Lewis NJ (1977) Pesticide induced DNA damage and its repair in cultured human cells. Mutat Res Fundam Mol Mech Mutagen 42:161–173

    Article  CAS  Google Scholar 

  • Belden JB, Gilliom RJ, Lydy MJ (2007) How well can we predict the toxicity of pesticide mixtures to aquatic life? Integr Environ Assess Manag 3:364–372

    Article  CAS  Google Scholar 

  • Benton MJ, Malott ML, Trybula J, Dean DM, Guttman SI (2002) Genetic effects of mercury contamination on aquatic snail populations: allozyme genotypes and DNA strand breakage. Environ Toxicol Chem 21:584–589

    Article  CAS  Google Scholar 

  • Bijoy Nandan S, Nimila P (2012) Lindane toxicity: histopathological, behavioural and biochemical changes in Etroplus maculatus (Bloch, 1795). Mar Environ Res 76:63–70

    Article  CAS  Google Scholar 

  • Black MC, Ferrell JR, Horning RC, Martin LK (1996) DNA strand breakage in freshwater mussels (Anodonta grandis) exposed to lead in the laboratory and field. Environ Toxicol Chem 15:802–808

    Article  CAS  Google Scholar 

  • Blocher D, Pohlit W (1982) DNA double strand breaks in Ehrlich ascites tumour cells at low doses of X-rays. II. Can cell death be attributed to double strand breaks? Int J Radiat Biol 42:329–338

    CAS  Google Scholar 

  • Bradbury SP, Coats JR (1989) Comparative toxicology of the pyrethroid insecticides. In: Reviews of environmental contamination and toxicology. Springer, New York, pp 133–177

  • Buckley L (1984) RNA-DNA ratio: an index of larval fish growth in the sea. Mar Biol 80:291–298

    Article  CAS  Google Scholar 

  • Buschini A, Carboni P, Martino A, Poli P, Rossi C (2003) Effects of temperature on baseline and genotoxicant-induced DNA damage in haemocytes of Dreissena polymorpha. Mutat Res Genet Toxicol Environ Mutagen 537:81–92. doi:10.1016/S1383-5718(03)00050-0

    Article  CAS  Google Scholar 

  • Carter HJ (1981) Aspects of the physiological ecology of species of Gambusia from Belize, Central America. Copeia 1981:694–700

    Article  Google Scholar 

  • Chervinski J (1983) Salinity tolerance of the mosquito fish, Gambusia affinis (Baird and Girard). J Fish Biol 22:9–11. doi:10.1111/j.1095-8649.1983.tb04720.x

    Article  Google Scholar 

  • Cox C (1996) Insecticide factsheet, Cypermethrin. J Pestic Reform 16:15–20

    Google Scholar 

  • Czogała E, Leski J (2000) Studies in fuzziness and soft computing: fuzzy and neuro-fuzzy intelligent systems, vol 47. Physica-Verlag, New York

    Book  Google Scholar 

  • Das BK, Mukherjee SC (2003) Toxicity of cypermethrin in Labeo rohita fingerlings: biochemical, enzymatic and haematological consequences. Comp Biochem Physiol Part C Toxicol Pharmcol 134:109–121. doi:10.1016/S1532-0456(02)00219-3

    Article  Google Scholar 

  • Davies PE, Cook LSJ (1993) Catastrophic macroinvertebrate drift and sublethal effects on brown trout, Salmo trutta, caused by cypermethrin spraying on a Tasmanian stream. Aquat Toxicol 27:201–224. doi:10.1016/0166-445X(93)90055-6

    Article  CAS  Google Scholar 

  • Dich J, Wiklund K (1998) Prostate cancer in pesticide applicators in Swedish agriculture. Prostate 34:100–112

    Article  CAS  Google Scholar 

  • Ferraro MVM, Fenocchio AS, Mantovani MS, Ribeiro CdO, Cestari MM (2004) Mutagenic effects of tributyltin and inorganic lead (Pb II) on the fish H. malabaricus as evaluated using the comet assay and the piscine micronucleus and chromosome aberration tests. Genet Mol Biol 27:103–107

    Article  CAS  Google Scholar 

  • FishBase (2014) Aphanius sophiae. http://www.fishbase.org/summary/49469. Accessed 05 Sept 2014

  • Frenkel V, Goren M (2000) Factors affecting growth of killifish, Aphanius dispar, a potential biological control of mosquitoes. Aquaculture 184:255–265

    Article  Google Scholar 

  • Fu L, Medico E (2007) FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinform 8:3

    Article  Google Scholar 

  • Holmstrup M et al (2010) Interactions between effects of environmental chemicals and natural stressors: a review. Sci Total Environ 408:3746–3762

    Article  CAS  Google Scholar 

  • Jeyaratnam J (1990) Acute pesticide poisoning: a major global health problem. World Health Stat Q 43:139–144

    CAS  Google Scholar 

  • Jin Y, Zheng S, Pu Y, Shu L, Sun L, Liu W, Fu Z (2011) Cypermethrin has the potential to induce hepatic oxidative stress, DNA damage and apoptosis in adult zebrafish (Danio rerio). Chemosphere 82:398–404

    Article  CAS  Google Scholar 

  • Kienzler A, Bony S, Devaux A (2013) DNA repair activity in fish and interest in ecotoxicology: a review. Aquat Toxicol 134:47–56

    Article  Google Scholar 

  • Kumar A, Sharma B, Pandey RS (2008) Cypermethrin and λ-cyhalothrin induced alterations in nucleic acids and protein contents in a freshwater fish, Channa punctatus. Fish Physiol Biochem 34:331–338

    Article  CAS  Google Scholar 

  • Kumar A, Rai DK, Sharma B, Pandey RS (2009) λ-cyhalothrin and cypermethrin induced in vivo alterations in the activity of acetylcholinesterase in a freshwater fish, Channa punctatus (Bloch). Pestic Biochem Physiol 93:96–99

    Article  CAS  Google Scholar 

  • Laabs V, Amelung W, Pinto AA, Wantzen M, da Silva CJ, Zech W (2002) Pesticides in surface water, sediment, and rainfall of the northeastern Pantanal basin. Brazil J Environ Qual 31:1636–1648

    Article  CAS  Google Scholar 

  • Legrand M, Costentin E, Bruchet A (1991) Occurrence of 38 pesticides in various French surface and ground waters. Environ Technol 12:985–996

    Article  CAS  Google Scholar 

  • Leonardos I, Sinis A (1998) Reproductive strategy of Aphanius fasciatus Nardo, 1827 (Pisces: Cyprinodontidae) in the Mesolongi and Etolikon lagoons (W. Greece). Fish Res 35:171–181

    Article  Google Scholar 

  • MacFadyen EJ, Williamson CE, Grad G, Lowery M, Jeffrey WH, Mitchell DL (2004) Molecular response to climate change: temperature dependence of UV-induced DNA damage and repair in the freshwater crustacean Daphnia pulicaria. Glob Chang Biol 10:408–416

    Article  Google Scholar 

  • Machella N, Battino M, Pisanelli B, Regoli F (2006) Influence of the SCGE protocol on the amount of basal DNA damage detected in the Mediterranean mussel, Mytilus galloprovincialis. Environ Mol Mutagen 47:579–586

    Article  CAS  Google Scholar 

  • Malloy KD, Holman MA, Mitchell D, Detrich HW (1997) Solar UVB-induced DNA damage and photoenzymatic DNA repair in Antarctic zooplankton. Proc Natl Acad Sci USA 94:1258–1263

    Article  CAS  Google Scholar 

  • Marchini A (2011) Modelling ecological processes with fuzzy logic approaches. In: Jopp F, Reuter H, Breckling B (eds) Modelling complex ecological dynamics. Springer, New York, pp 133–145

    Chapter  Google Scholar 

  • Marino D, Ronco A (2005) Cypermethrin and chlorpyrifos concentration levels in surface water bodies of the Pampa Ondulada, Argentina. Bull Environ Contam Toxicol 75:820–826

    Article  CAS  Google Scholar 

  • Mosesso P et al (2012) The use of cyprinodont fish, Aphanius fasciatus, as a sentinel organism to detect complex genotoxic mixtures in the coastal lagoon ecosystem. Mutat Res Genet Toxicol Environ Mutagen 742:31–36. doi:10.1016/j.mrgentox.2011.11.018

    Article  CAS  Google Scholar 

  • Nedaei S (2013) Effects of sevin on DNA brekage and histology of the liver, kidney and gill in Aphanius sophiae (Coad, 1988). MSc thesis, University of Tehran

  • Nelson WG, Kastan MB (1994) DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol 14:1815–1823

    Article  CAS  Google Scholar 

  • Nordlie FG, Mirandi A (1996) Salinity relationships in a freshwater population of eastern mosquitofish. J Fish Biol 49:1226–1232. doi:10.1111/j.1095-8649.1996.tb01791.x

    Article  Google Scholar 

  • Pazooki J, Sheidai M, Korani MM (2008) A systematic and ecological study of Aphanius vladykovi Coad, 1988 (Actinopterygii: Cyprinodontidae) in Iran. Zool Middle East 43:85–89

    Article  Google Scholar 

  • Plimmer JR (2001) Chemistry of pesticides. In: Krieger RI (ed) Handbook of pesticide toxicology, vol 1, 2nd edn. Academic Press, New York, pp 95–107

    Chapter  Google Scholar 

  • Prashanth MS, David M, Mathed SG (2005) Behavioural changes in freshwater fish, Cirrhinus mrigala (Hamilton) exposed to cypermethrin. J Environ Biol 26:141–144

    CAS  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, New York

    Book  Google Scholar 

  • Rigonato J, Mantovani MS, Jordão BQ (2005) Comet assay comparison of different Corbicula fluminea (Mollusca) tissues for the detection of genotoxicity. Genet Mol Biol 28:464–468

    Article  Google Scholar 

  • Saha S, Kaviraj A (2009) Effects of cypermethrin on some biochemical parameters and its amelioration through dietary supplementation of ascorbic acid in freshwater catfish Heteropneustes fossilis. Chemosphere 74:1254–1259

    Article  CAS  Google Scholar 

  • Scarpato R, Migliore L, Angotzi G, Fedi A, Miligi L, Loprieno N (1996) Cytogenetic monitoring of a group of Italian floriculturists: no evidence of DNA damage related to pesticide exposure. Mutat Res Genet Toxicol Environ Mutagen 367:73–82

    Article  CAS  Google Scholar 

  • Schaefer JA, Wilson CC (2002) The fuzzy structure of populations. Can J Zool 80:2235–2241

    Article  Google Scholar 

  • Shi X et al (2011) Developmental toxicity of cypermethrin in embryo-larval stages of zebrafish. Chemosphere 85:1010–1016

    Article  CAS  Google Scholar 

  • Simonich SL, Hites RA (1995) Global distribution of persistent organochlorine compounds. Science 269:1851–1854

    Article  CAS  Google Scholar 

  • Singh PB, Singh V (2008) Cypermethrin induced histological changes in gonadotrophic cells, liver, gonads, plasma levels of estradiol-17β and 11-ketotestosterone, and sperm motility in Heteropneustes fossilis (Bloch). Chemosphere 72:422–431

    Article  CAS  Google Scholar 

  • Stephenson RR (1982) Aquatic toxicology of cypermethrin. I. Acute toxicity to some freshwater fish and invertebrates in laboratory tests. Aquat Toxicol 2:175–185. doi:10.1016/0166-445X(82)90014-5

    Article  CAS  Google Scholar 

  • Tang K-S, Man K-F, Liu Z-F, Kwong S (1998) Minimal fuzzy memberships and rules using hierarchical genetic algorithms. Ind Electron IEEE Trans 45:162–169

    Article  Google Scholar 

  • Troxel CM, Reddy AP, O’Neal PE, Hendricks JD, Bailey GS (1997) In Vivo aflatoxin B1 metabolism and hepatic DNA adduction in zebrafish (Danio rerio). Toxicol Appl Pharmacol 143:213–220. doi:10.1006/taap.1996.8058

    Article  CAS  Google Scholar 

  • Wauchope R (1978) The pesticide content of surface water draining from agricultural fields—a review. J Environ Qual 7:459–472

    Article  CAS  Google Scholar 

  • WHO (1991) Safe Use of Pesticides: fourteenth report of the WHO Expert Committee on Vector Biology and Control WHO, Geneva

  • Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern 3:28–44

    Article  Google Scholar 

  • Zhang AB et al (2012) A fuzzy-set-theory-based approach to analyse species membership in DNA barcoding. Mol Ecol 21:1848–1863

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the research deputy of the faculty of natural resources, university of Tehran, for partially funding the thesis of M. Nasrollah Pourmoghaddam, under the scheme of "Supporting the postgraduate theses", the present paper is based on those data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Poorbagher.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poorbagher, H., Moghaddam, M.N., Eagderi, S. et al. Estimating the DNA strand breakage using a fuzzy inference system and agarose gel electrophoresis, a case study with toothed carp Aphanius sophiae exposed to cypermethrin. Ecotoxicology 25, 1040–1046 (2016). https://doi.org/10.1007/s10646-016-1647-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-016-1647-5

Keywords

Navigation