Skip to main content
Log in

Ecotoxicological effect of zinc pyrithione in the freshwater fish Gambusia holbrooki

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Currently diverse biocidal agents can be used for distinct applications, such as personal hygiene, disinfection, antiparasitic activity, and antifouling effects. Zinc pyrithione is an organometallic biocide, with bactericidal, algicidal and fungicidal activities. It has been recently incorporated in antifouling formulas, such as paints, which prevent the establishment of a biofilm on surfaces exposed to the aquatic environment. It has also been used in cosmetics, such as anti-dandruff shampoos and soaps. Previously reported data has shown the presence of this substance in the aquatic compartment, a factor contributing to the potential exertion of toxic effects, and there is also evidence that photodegradation products of zinc pyrithione were involved in neurotoxic effects, namely by inhibiting cholinesterases in fish species. Additional evidence points to the involvement of zinc pyrithione in alterations of metal homeostasis and oxidative stress, in both aquatic organisms and human cell models. The present work assesses the potential ecotoxicity elicited by zinc pyrithione in the freshwater fish Gambusia holbrooki after an acute (96 h) exposure. The oxidative stress was assessed by the quantification of the activities of specific enzymes from the antioxidant defense system, such as catalase, and glutathione-S-transferases; and the extent of peroxidative damage was quantified by measuring the thiobarbituric acid reactive substances levels. Neurotoxicity was assessed through measurement of acetylcholinesterase activity; and a standardized method for the description and assessment of histological changes in liver and gills of was also used. Zinc pyrithione caused non-specific and reversible tissue alterations, both in liver and gills of exposed organisms. However, histopathological indices were not significantly different from the control group. In terms of oxidative stress biomarkers, none of the tested biomarkers indicated the occurrence of pro-oxidative effects, suggesting that the oxidative pathway is not the major toxicological outcome of exposure to zinc pyrithione.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 6:105–121

    Google Scholar 

  • Ahmad I, Pacheco M, Santos M (2006) Anguilla anguilla L. oxidative stress biomarkers: an in situ study of freshwater wetland ecosystem (Pateira de Fermentelos, Portugal). Chemosphere 65(6):952–962

    Article  CAS  Google Scholar 

  • Alazemi BM, Lewis JW, Andrews EB (1996) Gill damage in the freshwater fish Gnathonemus petersii (Family: Mormyridae) exposed to selected pollutants: an ultrastructural study. Environ Technol 17(3):225–238

    Article  CAS  Google Scholar 

  • Álvarez-Muñoz D, Gómez-Pana A, Blasco J, Sarasquete C, González-Mazo E (2009) Oxidative stress and histopathology damage related to the metabolism of dodecylbenzene sulfonate in Senegalese sole. Chemosphere 74(9):1216–1223

    Article  Google Scholar 

  • Bao VWW, Leung KMY, Kwok KWH, Zhang AQ, Lui GCS (2008) Synergistic toxic effects of zinc pyrithione and copper to three marine species: implications on setting appropriate water quality criteria. Mar Pollut Bull 57(6–12):616–623

    Article  CAS  Google Scholar 

  • Bellas J, Granmo A, Beiras R (2005) Embryotoxicity of the antifouling biocide zinc pyrithione to sea urchin (Paracentrotus lividus) and mussel (Mytilus edulis). Mar Pollut Bull 50(11):1382–1385

    Article  CAS  Google Scholar 

  • Bernet D, Schmidt H, Meier W, Burkhardt-Holm P, Wahli T (1999) Histopathology in fish: proposal for a protocol to access aquatic pollution. J Fish Dis 22(1):25–34

    Article  Google Scholar 

  • Borg DA, Trombetta LD (2010) Toxicity and bioaccumulation of the booster biocide copper pyrithione, copper 2-pyridinethiol-1-oxide, in gill tissues of Salvelinus fontinalis (brook trout). Toxicol Ind Health 26(3):139–150

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  • Brandão F, Correia AT, Gonçalves F, Bruno Nunes B (2013) Effects of anthropogenic metallic contamination on cholinesterases of Gambusia holbrooki. Mar Poll Bull 76:72–76

    Article  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Method Enzymol 52:302–310

    Article  CAS  Google Scholar 

  • Cabral A, Marques C (1999) Life history, population dynamics and production of eastern mosquitofish, Gambusia holbrooki (Pisces, Poeciliidae) in rice fields of the lower Mondego River Valley, Western Portugal. Acta Oecol 20(6):607–620

    Article  Google Scholar 

  • Camargo M, Martinez C (2007) Histopathology of gills, kidney and liver of a neotropical fish caged in an urban stream. Neotrop Icthyol 5(3):327–336

    Article  Google Scholar 

  • Cengiz E, Unlü E (2003) Histopathological of gills in mosquitofish, Gambusia affinis after long-term exposure to sublethal concentrations of malathion. J Environ Sci Health B 38(5):581–589

    Article  CAS  Google Scholar 

  • Costa PM, Diniz MS, Caeiro S, Lobo J, Martins M, Ferreira AM, Caetano M, Vale C, DelValls TA, Costa MH (2009) Histological biomarkers in liver and gills of juvenile Solea senegalensis exposed to contaminated estuarine sediments: a weighted indices approach. Aquat Toxicol 92(3):202–212

    Article  CAS  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107(Suppl 6):907–938

    Article  CAS  Google Scholar 

  • Ellman G, Courtney KD, Vjr Andres, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–90

    Article  CAS  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177

    Article  CAS  Google Scholar 

  • Fernandes MN, Mazon AF (2003) Environmental pollution and fish gill morphology. In: Val AL, Kapoor BG (eds) Fish adaptations. Science Publishers, Enfield, pp 203–231

    Google Scholar 

  • Fernandes C, Fontaínhas-Fernandes A, Rocha E, Salgado MA (2008) Monitoring pollution in Esmoriz-Paramos lagoon, Portugal: liver histological and biochemical effects in Liza saliens. Environ Monit Assess 145(1–3):315–322

    Article  CAS  Google Scholar 

  • Ferreira G, Simas T, Nobre A, Silva C, Shiffereggen K, Lencart-Silva J (2003). Identification of sensitive areas and vulnerable zones in transitional and coastal Portuguese systems: spplication of the United States National Estuarine Eutrophication Assessment to the Minho, Lima, Douro, Ria de Aveiro, Mondego, Tagus, Sado, Mira, Ria Formosa and Guadiana systems. INAG/IMAR

  • Gonçalves A, Padrão J, Gonçalves F, Nunes B (2010) In vivo acute effects of several pharmaceutical drugs (diazepam, clofibrate, clofibric acid) and detergents (sodium dodecylsulphate and benzalkonium chloride) on cholinesterases from Gambusia holbrooki. Fresen Environ Bull 4:1–12

    Google Scholar 

  • Guardiola FA, Cuesta A, Mesequer A, Esteban MA (2012) Risks of using antifouling biocides in aquaculture. Int J Mol Sci 13(2):1541–1560

    Article  CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    CAS  Google Scholar 

  • Hawkins WE, Overstreet RM, Provancha MJ (1984) Effects of space shuttle exhaust plumes on gills of some estuarine fishes: a light and electron microscopic study (vol 513), Faculty Publications from the Harold W, Manter Laboratory of Parasitology

  • Jagoe CH, Faivre A, Newman MC (1996) Morphological and morphometric changes in the gills of mosquitofish (Gambusia holbrooki) after exposure to mercury (II). Aquat Toxicol 34(2):163–183

    Article  CAS  Google Scholar 

  • Kobayashi N, Okamura H (2002) Effects of new antifouling compounds on the development of sea urchin. Mar Pollut Bull 44(8):748–751

    Article  CAS  Google Scholar 

  • Lamore SD, Wondrak GT (2011) Zinc pyrithione impairs zinc homeostasis and upregulates stress response gene expression in reconstructed human epidermis. Biometals 24(5):875–890

    Article  CAS  Google Scholar 

  • Lang T, Wosniok W, Baršienė J, Broeg K, Kopecka J, Parkkonen J (2006) Liver histopathology in Baltic flounder (Platichtys flesus) as indicator of biological effects of contaminants. Mar Pollut Bull 53(8–9):488–496

    Article  CAS  Google Scholar 

  • Mackie DS, van den Berg CMG, Readman JW (2004) Determination of pyrithione in natural waters by cathodic stripping voltammetry. Anal Chim Acta 511:47–53

    Article  CAS  Google Scholar 

  • Madsen T, Gustavsson K, SamsØe-Petersen L. Simonsen F, Jakobsen J, Foverskov S, Larsen MM (2000) Ecotoxicological assessments of antifouling biocides and nonbiocidal paints. Environmental Project no. 531. Danish Environmental Protection Agency

  • Maraldo K, Dahllöf I (2004) Indirect estimation of degradation time for zinc pyrithione and copper pyrithione in seawater. Mar Pollut Bull 48(9–10):894–901

    Article  CAS  Google Scholar 

  • Marcheselli M, Azzoni P, Mauri M (2011) Novel antifouling agent-zinc pyrithione: stress induction and genotoxicity to the marine mussel Mytilus galloprovincialis. Aquat Toxicol 102(1–2):39–47

    Article  CAS  Google Scholar 

  • Mazon AF, Monteiro EA, Pinheiro GH, Fernandes MN (2002) Hematological and physiological changes induced by short-term exposure to copper in the freshwater fish, Prochilodus scrofa. Braz J Biol 62(4A):621–631

    Article  CAS  Google Scholar 

  • Mochida K, Ito K, Harino H, Kakuno A, Fuji K (2006) Acute toxicity of pyrithione antifouling biocides and joint toxicity with copper to red sea bream (Pagrus major) and toy shrimp (Heptacarpus futilirostris). Environ Toxicol Chem 25(11):3058–3064

    Article  Google Scholar 

  • Mochida K, Ito K, Harino H, Tanaka H, Onduka T, Kakuno A, Fujii K (2009) Inhibition of acetylcholinesterase by metabolites of copper pyrithione (CuPT) and its possible involvement in vertebral deformity of a CuPT-exposed marine teleostean fish. Comp Biochem Phys C 149(4):624–630

    Google Scholar 

  • Neihof RA, Bailey CA, Patouillet C, Hannan PJ (1979) Photodegradation of mercaptopyridine-N-oxide biocides. Arch Environ Contam Toxicol 8(3):355–368

    Article  CAS  Google Scholar 

  • Nico L, Fuller P (2013) Gambusia holbrooki. USGS Nonindigenous Aquatic Species Database, Gainesville, Fl. http://nas.er.usgs.gov/queries/Factsheet.aspx?speciesID=849. Accessed 05 Apr 2013

  • Nunes B, Carvalho F, Guilhimermino L (2003) Characterization of total head cholinesterases of Gambusia holbrooki (mosquitofish), and the assessment of effects induced by two environmental contaminants. J Vet Pharmacol Ther 26(1):260–261

    CAS  Google Scholar 

  • Nunes B, Gaio AR, Carvalho F, Guilhermino L (2008) Behaviour and biomarkers of oxidative stress in Gambusia holbrooki after acute exposure to widely used pharmaceuticals and a detergent. Ecotox Environ Safe 71(2):341–354

    Article  CAS  Google Scholar 

  • Nunes B, Barbosa AR, Antunes SC, Gonçalves F (2014) Combination effects of anticholinesterasics in acetylcholinesterase of a fish species: effects of a metallic compound, an organophosphate pesticide, and a pharmaceutical drug. Environ Sci Pollut Res 21:6258–6262

    Article  CAS  Google Scholar 

  • Nunes B, Antunes SC, Gomes R, Campos JC, Braga MR, Ramos AS, Correia AT (2015) Acute effects of tetracycline exposure in the freshwater fish Gambusia holbrooki: antioxidant effects, neurotoxicity and histological alterations. Arch Environ Contam Toxicol 68(2):371–381

    Article  CAS  Google Scholar 

  • OECD (1992) OECD Guideline for the testing of chemicals. Test 203: Fish, Acute Toxicity Test

  • Olsson PE, Larsson A, Haux C (1996) Influence of seasonal changes in water temperature on cadmium inducibility of hepatic and renal metallothionein in rainbow trout. Mar Environ Res 42:41–44

    Article  CAS  Google Scholar 

  • Olurin KB, Olojo EAA, Mbaka GO, Akindele AT (2006) Histopathological responses of the gill and liver tissues of Clarias gariepinus fingerlings to the herbicide, glyphosate. Afr J Biotechnol 5(24):2480–2487

    CAS  Google Scholar 

  • Onduka T, Mochida K, Harino H, Ito K, Kakuno A, Fujii K (2010) Toxicity of metal pyrithione photodegradation products to marine organisms with indirect evidence for their presence in seawater. Arch Environ Contam Toxicol 58(4):991–997

    Article  CAS  Google Scholar 

  • Oyama TM, Saito M, Yonezama T, Okano Y, Oyama Y (2012) Nanomolar concentrations of zinc pyrithione increase cell susceptibility to oxidative stress induced by hydrogen peroxide in rat thymocytes. Chemosphere 87(11):1316–1322

    Article  CAS  Google Scholar 

  • Poleksic V, Mitrovic-Tutundzic V (1994) Fish gills as a monitor of sublethal and chronic effects of pollution. In: Müller R, Lloyd R (eds) Sublethal and chronic effects of pollutants on freshwater fish. Fishing New Books, Oxford

    Google Scholar 

  • Reeder NL, Kaplan J, Xu J, Youngguist RS, Wallace J, Hu P, Juhlin KD, Schwartz JR, Grant RA, Fieno A, Nerneth S, Reichling T, Tiesman JP, Mills T, Steinke M, Wang SL, Saunders CW (2011) Zinc pyrithione inhibits yeast growth through copper influx and inactivation of iron-sulfur proteins. Antimicrob Agents Chem 55(12):5753–5760

    Article  CAS  Google Scholar 

  • Richmonds C, Dutta H (1989) Histopathological changes induced by malathion in the gills of bluegill Lepomis macrochirus. B Environ Contam Toxicol 43:123–130

    Article  CAS  Google Scholar 

  • Rudolf E, Cervinka M (2011) Stress responses of human dermal fibroblasts exposed to zinc pyrithione. Toxicol Lett 204(2–3):164–173

    Article  CAS  Google Scholar 

  • Sakkas VA, Shibata K, Yamaguchi Y, Sugasawa S, Albanis T (2007) Aqueous phototransformation of zinc pyrithione: degradation kinetics and byproduct identification by liquid chromatography–atmospheric pressure chemical ionisation mass spectrometry. J Chromatogr A 1144(2):175–182

    Article  CAS  Google Scholar 

  • Schwartz JR, Shah R, Krigbaum H, Sacha J, Vogt A, Blume-Peytavi U (2011) New insights on dandruff/seborrhoeic dermatitis: the role of the scalp follicular infundibulum in effective treatment strategies. Br J Dermatol 165(Suppl 2):18–23

    Article  CAS  Google Scholar 

  • Sismeiro-Vivas J, Abrantes N, Pereira JL, Castro BB, Gonçalves F (2007) Short-term effects of Quirlan® (Chlorfenvinphos) on the behavior and acetylcholinesterase activity of Gambusia holbrooki. Environ Toxicol 22:194–202

    Article  CAS  Google Scholar 

  • Takashima F, Hibiya T (1995) An atlas of fish histology: normal and pathological features, 2nd edn. Kodensha Ltd., Tokyo

    Google Scholar 

  • Turley PA, Fenn RJ, Ritter JC, Callow ME (2005) Pyrithiones as antifoulants: environmental fate and loss of toxicity. Biofouling 21(1):31–40

    Article  CAS  Google Scholar 

  • Wilson JM, Bunte RM, Carty AJ (2009) Evaluation of rapid cooling and tricaine methanesulfonate (MS222) as methods of euthanasia in zebrafish (Danio rerio). J Am Assoc Lab Anim Sci 48(6):785–789

    CAS  Google Scholar 

  • Wood CM, Soivio A (1991) Environmental effects on gill function: an introduction. Physiol Zool 64(1):1–3

    Google Scholar 

  • Xuereb B, Lefèvre E, Garric J, Geffard O (2009) Acetylcholinesterase activity in Gammarus fossarum (Crustacea Amphipoda): linking AChE inhibition and behavioural alteration. Aquat Toxicol 94(2):114–122

    Article  CAS  Google Scholar 

  • Yasokawa D, Murata S, Iwahashi Y, Kitagawa E, Kishi K, Okumura Y, Iwahashi H (2010) DNA microarray analysis suggests that zinc pyrithione causes iron starvation to the yeast Saccharomyces cerevisiae. J Biosci Bioeng 109(5):479–486

    Article  CAS  Google Scholar 

  • Yasser AG, Naser MD (2011) Impact of pollutants on fish collected from different parts of Shatt Al-Arab River: a histopathological study. Environ Monit Assess 181(1–4):175–182

    Article  Google Scholar 

  • Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50(2):75–104

    Article  CAS  Google Scholar 

  • Zha J, Wang Z, Wang N, Ingersoll C (2007) Histological alternation of vitellogenin induction in adult rare minnow (Gobiocypris rarus) after exposure to ethynylestradiol and nonylphenol. Chemosphere 66(3):488–495

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by European Funds through COMPETE and by National Funds through the Portuguese Science Foundation (FCT) within project PEst-C/MAR/LA0017/2013. Bruno Nunes was hired under the programme Investigador FCT, co-funded by the Human Potential Operational Programme (National Strategic Reference Framework 2007–2013) and European Social Fund (EU). We would like to thank the highly valuable contribution of Dr. Jonathan Wilson for the revision of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Nunes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, B., Braga, M.R., Campos, J.C. et al. Ecotoxicological effect of zinc pyrithione in the freshwater fish Gambusia holbrooki . Ecotoxicology 24, 1896–1905 (2015). https://doi.org/10.1007/s10646-015-1525-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1525-6

Keywords

Navigation