Skip to main content
Log in

Cloning of the Aegiceras corniculatum class I chitinase gene (AcCHI I) and the response of AcCHI I mRNA expression to cadmium stress

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Chitinases in terrestrial plants have been reported these are involved in heavy metal tolerance/detoxification. This is the first attempt to reveal chitinase gene (AcCHI I) and its function on metal detoxification in mangroves Aegiceras corniculatum. RT-PCR and RACE techniques were used to clone AcCHI I, while real-time quantitative PCR was employed to assess AcCHI I mRNA expressions in response to Cadmium (Cd). The deduced AcCHI I protein consists of 316 amino acids, including a signal peptide region, a chitin-binding domain (CBD) and a catalytic domain. Protein homology modeling was performed to identify potential features in AcCHI I. The CBD structure of AcCHI I might be critical for metal tolerance/homeostasis of the plant. Clear tissue-specific differences in AcCHI I expression were detected, with higher transcript levels detected in leaves. Results demonstrated that a short duration of Cd exposure (e.g., 3 days) promoted AcCHI I expression in roots. Upregulated expression was also detected in leaves under 10 mg/kg Cd concentration stress. The present study demonstrates that AcCHI I may play an important role in Cd tolerance/homeostasis in the plant. Further studies of the AcCHI I protein, gene overexpression, the promoter and upstream regulation will be necessary for clarifying the functions of AcCHI I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot 75:307–324

    CAS  Google Scholar 

  • Beerhues L, Kombrink E (1994) Primary structure and expression of mRNAs encoding basic chitinase and 1, 3-β-glucanase in potato. Plant Mol Biol 24:353–367

    Article  CAS  Google Scholar 

  • Beintema JJ (1994) Structural features of plant chitinases and chitin-binding proteins. FEBS Lett 350:159–163

    Article  CAS  Google Scholar 

  • Békésiová B, Hraška Š, Libantová J, Moravčíková J, Matušíková I (2008) Heavy-metal stress induced accumulation of chitinase isoforms in plants. Mol Biol Rep 35:579–588

    Article  CAS  Google Scholar 

  • Betz SF (1993) Disulfide bonds and the stability of globular proteins. Protein Sci 2:1551–1558

    Article  CAS  Google Scholar 

  • Chen RD, Yu LX, Greer AF, Cheriti H, Tabaeizadeh Z (1994) Isolation of an osmotic stress-induced and abscisic-acid-induced gene encoding an acidic endochitinase from lycopersicon-chilense. Mol Gen Genet 245:195–202

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40

    Article  CAS  Google Scholar 

  • Dani V, Simon WJ, Duranti M, Croy RRD (2005) Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics 5:737–745

    Article  CAS  Google Scholar 

  • de las Mercedes Dana M, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730

    Article  CAS  Google Scholar 

  • de los Reyes BG, Taliaferro CM, Anderson MP, Melcher U, McMaugh S (2001) Induced expression of the class II chitinase gene during cold acclimation and dehydration of bermudagrass (Cynodon sp.). Theor Appl Genet 103:297–306

    Article  CAS  Google Scholar 

  • di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Edreva A (2005) Pathogenesis-related proteins: research progress in the last 15 years. Gen Appl Plant Physiol 31:105–124

    CAS  Google Scholar 

  • Gonzalez-Mendoza D, Moreno AQ, Zapata-Perez O (2007) Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper. Aquat Toxicol 83:306–314

    Article  CAS  Google Scholar 

  • Graham LS, Sticklen MB (1994) Plant chitinases. Can J Bot 72:1057–1083

    Article  CAS  Google Scholar 

  • Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644

    Article  CAS  Google Scholar 

  • Huang GY, Wang YS (2010) Expression and characterization analysis of type 2 metallothionein from grey mangrove species (Avicennia marina) in response to metal stress. Aquat Toxicol 99:86–92

    Article  CAS  Google Scholar 

  • Huang G-Y, Wang Y-S, Ying G-G (2011) Cadmium-inducible BgMT2, a type 2 metallothionein gene from mangrove species (Bruguiera gymnorrhiza), its encoding protein shows metal-binding ability. J Exp Mar Biol Ecol 405:128–132

    Article  CAS  Google Scholar 

  • Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136:3276–3283

    Article  CAS  Google Scholar 

  • Kader J-C (1996) Lipid-transfer proteins in plants. Annu Rev Plant Biol 47:627–654

    Article  CAS  Google Scholar 

  • Kezuka Y, Kojima M, Mizuno R, Suzuki K, Watanabe T, Nonaka T (2010) Structure of full-length class I chitinase from rice revealed by X-ray crystallography and small-angle X-ray scattering. Proteins: structure. Funct Bioinf 78:2295–2305

    Article  CAS  Google Scholar 

  • Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J (2008) Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics 8:2514–2530

    Article  CAS  Google Scholar 

  • Kieffer P, Schroder P, Dommes J, Hoffmann L, Renaut J, Hausman JF (2009) Proteomic and enzymatic response of poplar to cadmium stress. J Proteomics 72:379–396

    Article  CAS  Google Scholar 

  • Lin Y-F, Aarts MG (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69:3187–3206

    Article  CAS  Google Scholar 

  • Linthorst HJM, Van Loon L, Van Rossum C, Mayer A, Bol J, Van Roekel J, Meulenhoff E, Cornelissen B (1990) Analysis of acidic and basic chitinases from tobacco and petunia and their constitutive expression in transgenic tobacco. Mol Plant-Microbe Interact 3:252–258

    Article  CAS  Google Scholar 

  • Liu FJ, Tang YT, Du RJ, Yang HY, Wu QT, Qiu RL (2010) Root foraging for zinc and cadmium requirement in the Zn/Cd hyperaccumulator plant Sedum alfredii. Plant Soil 327:365–375

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • MacFarlane G, Burchett M (2001) Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the Grey mangrove, Avicennia marina (Forsk.) Vierh. Mar Pollut Bull 42:233–240

    Article  CAS  Google Scholar 

  • MacFarlane GR, Koller CE, Blomberg SP (2007) Accumulation and partitioning of heavy metals in mangroves: a synthesis of field-based studies. Chemosphere 69:1454–1464

    Article  CAS  Google Scholar 

  • Maier T, Yu C, Küllertz G, Clemens S (2003) Localization and functional characterization of metal-binding sites in phytochelatin synthases. Planta 218:300–308

    Article  CAS  Google Scholar 

  • Margispinheiro M, Martin C, Didierjean L, Burkard G (1993) Differential expression of bean chitinase genes by virus-infection, chemical treatment and UV irradiation. Plant Mol Biol 22:659–668

    Article  CAS  Google Scholar 

  • Naumann TA (2011) Modification of recombinant maize ChitA chitinase by fungal chitinase-modifying proteins. Mol Plant Pathol 12:365–372

    Article  CAS  Google Scholar 

  • Passarinho PA, Van Hengel AJ, Fransz PF, de Vries SC (2001) Expression pattern of the Arabidopsis thaliana AtEP3/AtchitIV endochitinase gene. Planta 212:556–567

    Article  CAS  Google Scholar 

  • Rivera-Becerril F, Metwally A, Martin-Laurent F, Van Tuinen D, Dietz KJ, Gianinazzi S, Gianinazzi-Pearson V (2005) Molecular responses to cadmium in roots of Pisum sativum L. Water Air Soil Pollut 168:171–186

    Article  CAS  Google Scholar 

  • Rushton P, Somssich IE, Logemann E, Halbrock K, Kirsch C (2011) Chimeric promoters capable of mediating gene expression in plants upon pathogen infection and uses thereof. EP Patent 2336336 A2

  • Samac DA, Hironaka CM, Yallaly PE, Shah DM (1990) Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana. Plant Physiol 93:907–914

    Article  CAS  Google Scholar 

  • Sarowar S, Kim YJ, Kim EN, Kim KD, Hwang BK, Islam R, Shin JS (2005) Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep 24:216–224

    Article  CAS  Google Scholar 

  • Sharma A, Gontia I, Agarwal PK, Jha B (2010) Accumulation of heavy metals and its biochemical responses in Salicornia brachiata, an extreme halophyte. Mar Biol Res 6:511–518

    Article  Google Scholar 

  • Sugimoto K, Matsui K, Ozawa R, Takabayashi J (2011) Characterization of the promoter sequence of chitinase gene from lima bean plant. J Plant Interact 6:163–164

    Article  CAS  Google Scholar 

  • Tam N, Wong Y (2000) Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environ Pollut 110:195–205

    Article  CAS  Google Scholar 

  • Thalmair M, Bauw G, Thiel S, Döhring T, Langebartels C, Sandermann H (1996) Ozone and ultraviolet B effects on the defense-related proteins β-1, 3-glucanase and chitinase in tobacco. J Plant Physiol 148:222–228

    Article  CAS  Google Scholar 

  • Veluthakkal R, Dasgupta M (2012) Isolation and characterization of pathogen defence-related class I chitinase from the actinorhizal tree Casuarina equisetifolia. For Pathol 42:467–480

    Article  Google Scholar 

  • Wong YS, Tam NFY, Chen GZ, Ma H (1998) Response of Aegiceras corniculatum to synthetic sewage under simulated tidal conditions. Springer, New York, pp 89–96

    Google Scholar 

  • Wu CT, Bradford KJ (2003) Class I chitinase and beta-1,3-glucanase are differentially regulated by wounding, methyl jasmonate, ethylene, and gibberellin in tomato seeds and leaves. Plant Physiol 133:263–273

    Article  CAS  Google Scholar 

  • Wu S, Kriz AL, Widholm JM (1994) Molecular analysis of two cDNA clones encoding acidic class I chitinase in maize. Plant Physiol 105:1097–1105

    Article  CAS  Google Scholar 

  • Xu Y, Zhu Q, Panbangred W, Shirasu K, Lamb C (1996) Regulation, expression and function of a new basic chitinase gene in rice (Oryza sativa L.). Plant Mol Biol 30:387–401

    Article  CAS  Google Scholar 

  • Yadav S (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Yamamoto S, Nakano T, Suzuki K, Shinshi H (2004) Elicitor-induced activation of transcription via W box-related cis-acting elements from a basic chitinase gene by WRKY transcription factors in tobacco. Biochim Biophys Acta (BBA) 1679:279–287

    Article  CAS  Google Scholar 

  • Yang S, Wu Q (2003) Effect of Cd on growth and physiological characteristics of Aegiceras corniculatum seedlings. Mar Environ Sci/Haiyang Huanjing Kexue 22:38–42

    Google Scholar 

  • Yang P, Chen C, Wang Z, Fan B, Chen Z (1999) A pathogen- and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter. Plant J 18:141–149

    Article  CAS  Google Scholar 

  • Yu L-X, Djebrouni M, Chamberland H, Lafontaine JG, Tabaeizadeh Z (1998) Chitinase: differential induction of gene expression and enzyme activity by drought stress in the wild (Lycopersicon chilense Dun.) and cultivated (L. esculentum Mill.) tomatoes. J Plant Physiol 153:745–753

    Article  CAS  Google Scholar 

  • Yu-Hong L, Hong-You H, Jing-Chun L, Gui-Lan W (2010) Distribution and mobility of copper, zinc and lead in plant-sediment systems of Quanzhou Bay Estuary, China. Int J Phytorem 12:291–305

    Article  CAS  Google Scholar 

  • Zhang FQ, Wang YS, Lou ZP, Dong JD (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:44–50

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Key Projects in the National Science & Technology Pillar Program in the Eleventh 5-year Plan Period (No. 2012BAC07B0402), the Projects of Guangzhou Science and Technology (No. 201504010006), the National Natural Science Foundation of China (Nos. 41430966, 41076070 and 41176101) and the Projects of the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KSCX2-SW-132).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Shao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LY., Wang, YS., Cheng, H. et al. Cloning of the Aegiceras corniculatum class I chitinase gene (AcCHI I) and the response of AcCHI I mRNA expression to cadmium stress. Ecotoxicology 24, 1705–1713 (2015). https://doi.org/10.1007/s10646-015-1502-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1502-0

Keywords

Navigation