Skip to main content

Advertisement

Log in

Level of UV-B radiation influences the effects of glyphosate-based herbicide on the spotted salamander

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Glyphosate-based herbicides are the number one pesticide in the United States and are used commonly around the world. Understanding the affects of glyphosate-based herbicides on non-target wildlife, for example amphibians, is critical for evaluation of regulations pertaining to the use of such herbicides. Additionally, it is important to understand how variation in biotic and abiotic environmental conditions, such as UV-B light regime, could potentially affect how glyphosate-based herbicides interact with non-target species. This study used artificial pond mesocosms to identify the effects of generic glyphosate-based herbicide (GLY-4 Plus) on mortality, cellular immune response, body size, and morphological plasticity of larvae of the spotted salamander (Ambystoma maculatum) under conditions that reflect moderate (UVM) and low (UVL) UV-B light regimes. Survival within a given UV-B level was unaffected by herbicide presence or absence. However, when herbicide was present, survival varied between UV-B levels with higher survival in UVM conditions. Herbicide presence in the UVM treatments also decreased body size and reduced cellular immune response. In the UVL treatments, the presence of herbicide increased body size and affected tail morphology. Finally, in the absence of herbicide, body size and cellular immune response were higher in UVM treatments compared to UVL treatments. Thus, the effects of herbicide on salamander fitness were dependent on UV-B level. As anthropogenic habitat modifications continue to alter landscapes that contain amphibian breeding ponds, salamanders may increasingly find themselves in locations with reduced canopy cover and increased levels of UV light. Our findings suggest that the probability of surviving exposure to the glyphosate-based herbicide used in this study may be elevated in more open canopy ponds, but the effects on other components of fitness may be varied and unexpected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Proceedings of Second International Symposium on Information Theory. Budapest: Akademiai Kiado, pp. 267–281

  • Alton LA, Wilson RS, Franklin CE (2010) Risk of predation enhances the lethal effects of UV-B in amphibians. Glob Change Biol 16:538–545

    Article  Google Scholar 

  • Bancroft BA, Baker NJ, Blaustein AR (2008a) A meta-analysis of the effects of ultraviolet B radiation and its synergistic interactions with pH, contaminants, and disease on amphibian survival. Conserv Biol 22:987–996

    Article  Google Scholar 

  • Bancroft BA, Baker NJ, Searle CL et al (2008b) Larval amphibians seek warm temperatures and do not avoid harmful UVB radiation. Behav Ecol 19:879–886

    Article  Google Scholar 

  • Barolo D (1993) Reregistration eligibility decision for glyphosate

  • Bates D, Maechler M (2009) Package “lme4.” URL http://lme4.r-forge.r-project.org/

  • Baylis AD (2000) Why glyphosate is a global herbicide: strengths, weaknesses and prospects. Pest Manag Sci 56:299–308

    Article  CAS  Google Scholar 

  • Bernal MH, Solomon KR, Carrasquilla G (2009) Toxicity of formulated glyphosate (Glyphos) and Cosmo-Flux to larval and juvenile Colombian frogs 2. Field and laboratory microcosm acute toxicity. J Toxicol Environ Health A 72:966–973

    Article  CAS  Google Scholar 

  • Blaustein AR, Hoffman PD, Hokit DG et al (1994) UV repair and resistance to solar UV-B in amphibian eggs: a link to population declines? Proc Natl Acad Sci 91:1791–1795

    Article  CAS  Google Scholar 

  • Blaustein AR, Romansic JM, Kiesecker JM, Hatch AC (2003) Ultraviolet radiation, toxic chemicals and amphibian population declines. Divers Distrib 9:123–140

    Article  Google Scholar 

  • Blaustein AR, Gervasi SS, Johnson PTJ et al (2012) Ecophysiology meets conservation: understanding the role of disease in amphibian population declines. Philos Trans R Soc B Biol Sci 367:1688–1707

    Article  Google Scholar 

  • Boughton RK, Joop G, Armitage SAO (2011) Outdoor immunology: methodological considerations for ecologists. Funct Ecol 25:81–100

    Article  Google Scholar 

  • Bradford DF, Knapp RA, Sparling DW et al (2011) Pesticide distributions and population declines of California, USA, alpine frogs, Rana muscosa and Rana sierrae. Environ Toxicol Chem 30:682–691

    Article  CAS  Google Scholar 

  • Brausch JM, Beall B, Smith PN (2007) Acute and sub-lethal toxicity of three POEA surfactant formulations to Daphnia magna. Bull Environ Contam Toxicol 78:510–514

    Article  CAS  Google Scholar 

  • Bridges CM, Boone MD (2003) The interactive effects of UV-B and insecticide exposure on tadpole survival, growth and development. Biol Conserv 113:49–54

    Article  Google Scholar 

  • Bridges CM, Semlitsch RD (2001) Genetic variation in insecticide tolerance in a population of southern leopard frogs (Rana sphenocephala): implications for amphibian conservation. Copeia 2001:7–13

    Article  Google Scholar 

  • Broomhall SD, Osborne WS, Cunningham RB (2000) Comparative effects of ambient ultraviolet-B radiation on two sympatric species of Australian frogs. Conserv Biol 14:420–427

    Article  Google Scholar 

  • Chen CY, Hathaway KM, Folt CL (2004) Multiple stress effects of Vision® herbicide, pH, and food on zooplankton and larval amphibian species from forest wetlands. Environ Toxicol Chem 23:823–831

    Article  CAS  Google Scholar 

  • Cockell CS, Blaustein AR (2000) “Ultraviolet spring” and the ecological consequences of catastrophic impacts. Ecol Lett 3:77–81

    Article  Google Scholar 

  • Collyer ML, Adams DC (2007) Analysis of two-state multivariate phenotypic change in ecological studies. Ecology 88:683–692

    Article  Google Scholar 

  • Collyer ML, Sekora DJ, Adams DC (2014) A method for analysis of phenotypic change for phenotypes described by high-dimensional data. Heredity. doi:10.1038/hdy.2014.75

    Google Scholar 

  • Cordero RR, Seckmeyer G, Damiani A et al (2013) The world’s highest levels of surface UV. Photochem Photobiol Sci 13(1):70–81

    Article  Google Scholar 

  • Croteau MC, Davidson MA, Lean DRS, Trudeau VL (2008) Global increases in ultraviolet B radiation: potential impacts on amphibian development and metamorphosis. Physiol Biochem Zool PBZ 81:743–761

    Article  CAS  Google Scholar 

  • Crump D, Berrill M, Coulson D et al (1999a) Sensitivity of amphibian embryos, tadpoles, and larvae to enhanced UV-B radiation in natural pond conditions. Can J Zool 77:1956–1966

    Article  Google Scholar 

  • Crump D, Lean D, Berrill M et al (1999b) Spectral irradiance in pond water: influence of water chemistry. Photochem Photobiol 70:893–901

    Article  CAS  Google Scholar 

  • Davidson C (2004) Declining downwind: amphibian population declines in California and historical pesticide use. Ecol Appl 14:1892–1902

    Article  Google Scholar 

  • Davidson C, Knapp RA (2007) Multiple stressors and amphibian declines: dual impacts of pesticides and fish on yellow-legged frogs. Ecol Appl 17:587–597

    Article  Google Scholar 

  • Denver RJ (2009) Stress hormones mediate environment-genotype interactions during amphibian development. Gen Comp Endocrinol 164:20–31

    Article  CAS  Google Scholar 

  • Edge CB, Thompson DG, Hao C, Houlahan JE (2012) A silviculture application of the glyphosate-based herbicide VisionMAX to wetlands has limited direct effects on amphibian larvae. Environ Toxicol Chem 31:2375–2383

    Article  CAS  Google Scholar 

  • Edge CB, Gahl MK, Thompson DG, Houlahan JE (2013) Laboratory and field exposure of two species of juvenile amphibians to a glyphosate-based herbicide and Batrachochytrium dendrobatidis. Sci Total Environ 444:145–152

    Article  CAS  Google Scholar 

  • Edginton AN, Sheridan PM, Stephenson GR et al (2004) Comparative effects of pH and Vision® herbicide on two life stages of four anuran amphibian species. Environ Toxicol Chem 23:815–822

    Article  CAS  Google Scholar 

  • Edwards WM, Triplett GB, Kramer RM (1980) A watershed study of glyphosate transport in runoff. J Environ Qual 9:661

    Article  CAS  Google Scholar 

  • Egea-Serrano A, Relyea RA, Tejedo M, Torralva M (2012) Understanding of the impact of chemicals on amphibians: a meta-analytic review. Ecol Evol 2:1382–1397

    Article  Google Scholar 

  • El-Shebly AA, El-kady MAH (2008) Effects of glyphosate herbicide on serum growth hormone (GH) levels and muscle protein content in Nile tilapia (Oreochromis niloticus L.). Res J Fish Hydrobiol 3:84–88

    Google Scholar 

  • Flint SD, Caldwell MM (1998) Solar UV-B and visible radiation in tropical forest gaps: measurements partitioning direct and diffuse radiation. Glob Change Biol 4:863–870

    Article  Google Scholar 

  • Gallant AL, Klaver RW, Casper GS, Lannoo MJ (2007) Global rates of habitat loss and implications for amphibian conservation. Copeia 2007:967–979

    Article  Google Scholar 

  • Gervasi SS, Foufopoulos J (2008) Costs of plasticity: responses to desiccation decrease post-metamorphic immune function in a pond-breeding amphibian. Funct Ecol 22:100–108

    Google Scholar 

  • Giesy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for Roundup herbicide. Rev Env Contam Toxicol 167:35–120

    CAS  Google Scholar 

  • Gilbert SF, Epel D (2009) Ecological developmental biology: integrating epigenetics, medicine, and evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Gisler R (1974) Stress and the hormonal regulation of the immune response in mice. Psychother Psychosom 23:197–208

    Article  CAS  Google Scholar 

  • Glennemeier KA, Denver RJ (2002) Small changes in whole-body corticosterone content affect larval Rana pipiens fitness components. Gen Comp Endocrinol 127:16–25

    Article  CAS  Google Scholar 

  • Govindarajulu PP (2008) Literature review of impacts of glyphosate herbicide on amphibians: What risks can silvicultural use of this herbicide pose for amphibians in BC? Victoria: BC Ministry of Environment

  • Grube A, Donaldson D, Kiely T, Wu L (2011) Pesticides industry sales and usage: 2006 and 2007 market estimates

  • Hader D-P, Kumar HD, Smith RC, Worrest RC (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 6:267–285

    Article  Google Scholar 

  • Hader D-P, Helbling EW, Williamson CE, Worrest RC (2011) Effects of UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 10:242–260

    Article  Google Scholar 

  • Hayes TB, Collins A, Lee M et al (2002) Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc Natl Acad Sci 99:5476–5480

    Article  CAS  Google Scholar 

  • Herman JR, Bhartia PK, Ziemke J et al (1996) UV-B increases (1979–1992) from decreases in total ozone. Geophys Res Lett 23:2117–2120

    Article  CAS  Google Scholar 

  • Houlahan JE, Findlay CS, Schmidt BR et al (2000) Quantitative evidence for global amphibian population declines. Nature 404:752–755

    Article  CAS  Google Scholar 

  • Howe CM, Berrill M, Pauli BD et al (2004) Toxicity of glyphosate-based pesticides to four North American frog species. Environ Toxicol Chem 23:1928–1938

    Article  CAS  Google Scholar 

  • Hua J, Cothran R, Stoler A, Relyea R (2013a) Cross-tolerance in amphibians: wood frog mortality when exposed to three insecticides with a common mode of action. Environ Toxicol Chem 32:932–936

    Article  CAS  Google Scholar 

  • Hua J, Morehouse NI, Relyea R (2013b) Pesticide tolerance in amphibians: induced tolerance in susceptible populations, constitutive tolerance in tolerant populations. Evol Appl 6:1028–1040

    Google Scholar 

  • Johnson JR, Ryan ME, Micheletti SJ, Shaffer HB (2013) Short pond hydroperiod decreases fitness of nonnative hybrid salamanders. Anim Conserv 16:556–565

    Article  Google Scholar 

  • Jones DK, Hammond JI, Relyea RA (2010) Roundup® and amphibians: the importance of concentration, application time, and stratification. Environ Toxicol Chem 29:2016–2025

    CAS  Google Scholar 

  • Jones DK, Hammond JI, Relyea RA (2011) Competitive stress can make the herbicide Roundup® more deadly to larval amphibians. Environ Toxicol Chem 30:446–454

    Article  CAS  Google Scholar 

  • Jung RT, Davie M, Hunter JO, Chalmers TM (1978) Ultraviolet light: an effective treatment of osteomalacia in malabsorption. Br Med J 1:1668–1669

    Article  CAS  Google Scholar 

  • Kerby JL, Hart AJ, Storfer A (2011) Combined effects of virus, pesticide, and predator cue on the larval tiger salamander (Ambystoma tigrinum). EcoHealth 8:46–54

    Article  Google Scholar 

  • Kerr JB, McElroy CT (1993) Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Science 262:1032–1034

    Article  CAS  Google Scholar 

  • Kiesecker JM (2011) Global stressors and the global decline of amphibians: tipping the stress immunocompetency axis. Ecol Res 26:897–908

    Article  Google Scholar 

  • Krasny ME, Whitmore MC (1992) Gradual and sudden forest canopy gaps in Allegheny northern hardwood forests. Can J For Res 22:139–143

    Article  Google Scholar 

  • Lanctôt C, Robertson C, Navarro-Martín L et al (2013) Effects of the glyphosate-based herbicide Roundup WeatherMax® on metamorphosis of wood frogs (Lithobates sylvaticus) in natural wetlands. Aquat Toxicol 140–141:48–57

    Article  Google Scholar 

  • Lund-Høie K, Friestad HO (1986) Photodegradation of the herbicide glyphosate in water. Bull Environ Contam Toxicol 36:723–729

    Article  Google Scholar 

  • Mann RM, Bidwell JR (2001) The acute toxicity of agricultural surfactants to the tadpoles of four Australian and two exotic frogs. Environ Pollut 114:195–205

    Article  CAS  Google Scholar 

  • Marquis O, Miaud C, Ficetola GF et al (2009) Variation in genotoxic stress tolerance among frog populations exposed to UV and pollutant gradients. Aquat Toxicol 95:152–161

    Article  CAS  Google Scholar 

  • Martin LB, Han P, Lewittes J et al (2006) Phytohemagglutinin-induced skin swelling in birds: histological support for a classic immunoecological technique. Funct Ecol 20:290–299

    Article  Google Scholar 

  • Middleton EM, Herman JR, Celarier EA et al (2001) Evaluating ultraviolet radiation exposure with satellite data at sites of amphibian declines in Central and South America. Conserv Biol 15:914–929

    Article  Google Scholar 

  • Ortiz-Santaliestra ME, Fernández-Benéitez MJ, Lizana M, Marco A (2011) Influence of a combination of agricultural chemicals on embryos of the endangered gold-striped salamander (Chioglossa lusitanica). Arch Environ Contam Toxicol 60:672–680

    Article  CAS  Google Scholar 

  • Palen WJ, Schindler DE, Adams MJ et al (2002) Optical characteristics of natural waters protect amphibians from UV-B in the U.S. pacific northwest. Ecology 83:2951–2957

    Article  Google Scholar 

  • Petranka JW (1998) Salamanders of the United States and Canada. Smithsonian Institution Press, Washington

    Google Scholar 

  • Phillips CA, Johnson JR, Dreslik MJ, Petzing JE (2002) Effects of hydroperiod on recruitment of mole salamanders (Genus Ambystoma) at a temporary pond in Vermilion County, Illinois. Trans Ill State Acad Sci 95:131–139

    Google Scholar 

  • Prietl B, Treiber G, Pieber TR, Amrein K (2013) Vitamin D and immune function. Nutrients 5:2502–2521

    Article  CAS  Google Scholar 

  • Puglis HJ, Boone MD (2011) Effects of technical-grade active ingredient vs. commercial formulation of seven pesticides in the presence or absence of UV radiation on survival of green frog tadpoles. Arch Environ Contam Toxicol 60:145–155

    Article  CAS  Google Scholar 

  • Relyea RA (2003) Predators come and predators go: the reversibility of predator-induced traits. Ecology 84:1840–1848

    Article  Google Scholar 

  • Relyea RA (2004) Fine-tuned phenotypes: tadpole plasticity under 16 combinations of predators and competitors. Ecology 85:172–179

    Article  Google Scholar 

  • Relyea RA (2005a) The lethal impacts of Roundup and predatory stress on six species of North American tadpoles. Arch Environ Contam Toxicol 48:351–357. doi:10.1007/s00244-004-0086-0

    Article  CAS  Google Scholar 

  • Relyea RA (2005b) The lethal impact of Roundup on aquatic and terrestrial amphibians. Ecol Appl 15:1118–1124

    Article  Google Scholar 

  • Relyea RA (2005c) The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecol Appl 15:618–627

    Article  Google Scholar 

  • Relyea RA (2006) The effects of pesticides, pH, and predatory stress on amphibians under mesocosm conditions. Ecotoxicology 15:503–511

    Article  CAS  Google Scholar 

  • Relyea RA (2012) New effects of roundup on amphibians: predators reduce herbicide mortality; herbicides induce antipredator morphology. Ecol Appl 22:634–647

    Article  Google Scholar 

  • Relyea RA, Hoverman JT (2008) Interactive effects of predators and a pesticide on aquatic communities. Oikos 117:1647–1658

    Article  Google Scholar 

  • Relyea RA, Jones DK (2009) The toxicity of Roundup Original Max® to 13 species of larval amphibians. Environ Toxicol Chem 28:2004–2008

    Article  CAS  Google Scholar 

  • Relyea RA, Schoeppner NM, Hoverman JT (2005) Pesticides and amphibians: the importance of community context. Ecol Appl 15:1125–1134

    Article  Google Scholar 

  • Rhode SC, Pawlowski M, Tollrian R (2001) The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia. Nature 412:69–72

    Article  CAS  Google Scholar 

  • Rohlf FJ (2001) TPSSDIG, Version 1.31. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York, USA

  • Rohlf FJ (2003) TPSRELW, Version 1.29. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York, USA

  • Rohlf FJ (2013) TPSUTIL, Version 1.58. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York, USA

  • Romano MA, Romano RM, Santos LD et al (2012) Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression. Arch Toxicol 86:663–673

    Article  CAS  Google Scholar 

  • Scheessele EA (2007) Indirect effects of ultraviolet-B radiation on larval amphibians as mediated by food quality and trophic interactions. Dissertation, Oregon State University

  • Seiter S (2011) Predator presence suppresses immune function in a larval amphibian. Evol Ecol Res 13:283–293

    Google Scholar 

  • Shayeghi M, Dehghani MH, Alimohammadi M, Goodini K (2012) Using ultraviolet irradiation for removal of Malathion pesticide in water. J Arthropod-Borne Dis 6:45

    CAS  Google Scholar 

  • Smits JE, Bortolotti GR, Tella JL (1999) Simplifying the phytohaemagglutinin skin-testing technique in studies of avian immunocompetence. Funct Ecol 13:567–572

    Article  Google Scholar 

  • Speekmann CL, Bollens SM, Avent SR (2000) The effect of ultraviolet radiation on the vertical distribution and mortality of estuarine zooplankton. J Plankton Res 22:2325–2350

    Article  Google Scholar 

  • Storz UC, Paul RJ (1998) Phototaxis in water fleas (Daphnia magna) is differently influenced by visible and UV light. J Comp Physiol A 183:709–717

    Article  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA et al (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  CAS  Google Scholar 

  • Takagi T, Tamura Y, Weihs D (2013) Hydrodynamics and energy-saving swimming techniques of Pacific bluefin tuna. J Theor Biol 336:158–172

    Article  Google Scholar 

  • Talentino KA, Landre E (1991) Comparative development of two species of sympatric ambystoma Salamanders. J Freshw Ecol 6:395–401

    Article  Google Scholar 

  • Tevini M (1993) UV-B radiation and ozone depletion: effects on humans, animals, plants, microorganisms and materials. Lewis Publishers, Boca Raton

    Google Scholar 

  • Tietge JE, Diamond SA, Ankley GT et al (2001) Ambient solar UV radiation causes mortality in larvae of three species of Rana under controlled exposure conditions. Photochem Photobiol 74:261–268

    Article  CAS  Google Scholar 

  • Tsui MTK, Chu LM (2003) Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere 52:1189–1197

    Article  CAS  Google Scholar 

  • Urban MC (2008) Salamander evolution across a latitudinal cline in gape-limited predation risk. Oikos 117:1037–1049

    Article  Google Scholar 

  • Urban MC (2010) Microgeographic adaptations of spotted salamander morphological defenses in response to a predaceous salamander and beetle. Oikos 119:646–658

    Article  Google Scholar 

  • Vinebrooke RD, Leavitt PR (1996) Effects of ultraviolet radiation on periphyton in an alpine lake. Limnol Oceanogr 41:1035–1040

    Article  CAS  Google Scholar 

  • Wang N, Besser JM, Buckler DR et al (2005) Influence of sediment on the fate and toxicity of a polyethoxylated tallowamine surfactant system (MON 0818) in aquatic microcosms. Chemosphere 59:545–551

    Article  CAS  Google Scholar 

  • Whiteman HH, Wissinger SA, Denoël M et al (2012) Larval growth in polyphenic salamanders: making the best of a bad lot. Oecologia 168:109–118

    Article  CAS  Google Scholar 

  • Wilga CD, Lauder GV (2001) Functional morphology of the pectoral fins in bamboo sharks, Chiloscyllium plagiosum: benthic vs pelagic station-holding. J Morphol 249:195–209

    Article  CAS  Google Scholar 

  • Williamson CE (1995) What role does UV-B radiation play in freshwater ecosystems? Limnol Oceanogr 40:386–392

    Article  Google Scholar 

  • Wojtaszek BF, Staznik B, Chartrand DT et al (2004) Effects of Vision herbicide on mortality, avoidance response, and growth of amphibian larvae in two forest wetlands. Environ Toxicol Chem 23:832–842

    Article  CAS  Google Scholar 

  • Worrall JJ, Harrington TC (1988) Etiology of canopy gaps in spruce–fir forests at Crawford Notch, New Hampshire. Can J For Res 18:1463–1469

    Article  Google Scholar 

  • Zaga A, Little EE, Rabeni CF, Ellersieck MR (1998) Photoenhanced toxicity of a carbamate insecticide to early life stage anuran amphibians. Environ Toxicol Chem 17:2543–2553

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank J. Floyd, A. Levis, D. Stinson, A. Esterle, and K. Ziegler for their valuable assistance in animal collection, mesocosm preparation and maintenance, and various other tasks during the experiment. Additionally, we would like to thank A. Meier, M. Collyer, M. Boone, and three anonymous reviewers for critically reading this manuscript. We are grateful to M. Collyer for his invaluable assistance with statistical analysis and R coding. Finally, this work was supported by the Kentucky Academy of Science Marcia Athey Research Grant (NAL), Western Kentucky University Graduate Research Grant (NAL), Western Kentucky RCAP grant (JRJ), and the Western Kentucky University Biodiversity Center and Green River Preserve.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All field protocols were conducted under necessary permits acquired from state and federal authorities listed above.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas A. Levis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 199 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levis, N.A., Johnson, J.R. Level of UV-B radiation influences the effects of glyphosate-based herbicide on the spotted salamander. Ecotoxicology 24, 1073–1086 (2015). https://doi.org/10.1007/s10646-015-1448-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1448-2

Keywords

Navigation